锂离子电池用多孔电极结构设计及制备技术进展
Progress in structure design and preparation of porous electrodes for lithium ion batteries
查看参考文献85篇
汪晨阳
1,2,3
张安邦
1,2,3
常增花
1,2
吴帅锦
1,2
刘智
1,2,3
庞静
1,2,3
*
文摘
|
随着人们对锂离子电池需求的日益增加,高能量密度和高功率密度锂离子电池技术成为研究热点之一。材料改性及新材料开发能有效提高电池的能量密度,除此以外,孔隙率、孔径大小与分布、曲折度及电极组分分布等电极的微观结构参数也是决定电极及电池性能的关键因素。通过优化电极结构设计提升高比能电池的性能逐渐成为人们关注的焦点。本文综述了锂离子电池多孔电极结构设计优化的研究进展,总结了多孔电极结构设计要素及制备方法,最后对电极结构设计优化以及推动新型制备技术的规模化应用在高比能锂离子电池领域的未来发展前景进行展望。 |
其他语种文摘
|
With the increasing demand for lithium-ion batteries,lithium-ion batteries with high energy density and high power density have become one of the research hotspots.Material modification and new material development can effectively increase the energy density of lithium-ion batteries.In addition,the microstructure parameters of the electrode such as porosity,pore size and distribution, tortuosity and electrode composition distribution are also factors that determine the performance of the electrode and battery.Improving the performance of high specific energy batteries by optimizing the electrode structure design has gradually become the focus of attention.The research progress of porous electrode structure design optimization for lithium ion batteries was reviewed in this article, the design factors and preparation methods of porous electrode structure were summarized.Then the future development of electrode structure design optimization and the promotion of novel preparation technologies for large-scale application in the field of high specific energy lithium ion batteries were prospected in the field of high specific energy lithium ion batteries. |
来源
|
材料工程
,2022,50(1):67-79 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000021
|
关键词
|
锂离子电池
;
电极结构
;
孔隙率
;
曲折度
|
地址
|
1.
有研科技集团有限公司, 国家动力电池创新中心, 北京, 100088
2.
国联汽车动力电池研究院有限责任公司, 北京, 100088
3.
北京有色金属研究总院, 北京, 100088
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学;电工技术 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7150538
|
参考文献 共
85
共5页
|
1.
Zhuo H X. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure.
Nano Energy,2021,83(25):303-318
|
CSCD被引
1
次
|
|
|
|
2.
Beattie S D. Si electrodes for Li-ion batteries-a new way to look at an old problem.
Journal of the Electrochemical Society,2008,155(2):A158-A163
|
CSCD被引
21
次
|
|
|
|
3.
Yang G. The synergistic effects of Li_2SiO_3-coating and Si~(4+)-doping for LiNi_(0.5)Mn_(0.5)O_2 cathode materials on the structure and the electrochemical properties.
Journal of the Electrochemical Society,2017,164(12):A2889-A2897
|
CSCD被引
1
次
|
|
|
|
4.
Zhang Y. Studies on stability and capacity for long-life cycle performance of Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 by Mo modification for lithium-ion battery.
Journal of Power Sources,2017,358(2):1-12
|
CSCD被引
7
次
|
|
|
|
5.
Schipper F. From surface ZrO_2coating to bulk Zr doping by high temperature annealing of Nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries.
Advanced Energy Materials,2018,8(4):1701682
|
CSCD被引
36
次
|
|
|
|
6.
Lee Y S. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al_2O_3nanoparticles and conductive polymer.
ACS Appl Mater Interfaces,2015,7(25):13944-13951
|
CSCD被引
16
次
|
|
|
|
7.
Wang Z. FePO_4-coated Li[Li_(0.2)Ni_(0.13) Co_(0.13)Mn_(0.5)_4]O_2 with improved cycling performance as cathode material for li-ion batteries.
Rare Metals,2015,36(11):899-904
|
CSCD被引
2
次
|
|
|
|
8.
Qing R P. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+doping.
Advanced Energy Materials,2016,6(6):1501914
|
CSCD被引
30
次
|
|
|
|
9.
Sohn H. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries.
Journal of Power Sources,2016,334(1):128-136
|
CSCD被引
6
次
|
|
|
|
10.
刘晶晶. 用于锂离子电池负极的多孔硅材料制备.
厦门大学学报(自然科学版),2013,52(4):450-454
|
CSCD被引
2
次
|
|
|
|
11.
Ko M. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries.
Nano Energy,2016,1(9):16113-16121
|
CSCD被引
2
次
|
|
|
|
12.
Wang H. Scalable preparation of silicon@ graphite/carbon microspheres as high-performance lithiumion battery anode materials.
RSC Advances,2016,6(74):69882-69888
|
CSCD被引
9
次
|
|
|
|
13.
Yang C Y. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite.
Nature,2019,569(7755):245-250
|
CSCD被引
16
次
|
|
|
|
14.
Zhang H. In situ synthesis of multilayer carbon matrix decorated with copper particles:enhancing the performance of Si as anode for Li-ion batteries.
ACS Nano,2019,13(3):3054-3062
|
CSCD被引
8
次
|
|
|
|
15.
Sun Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries.
Nature Energy,2016,1(7):1-12
|
CSCD被引
19
次
|
|
|
|
16.
Ramadesigan V. Optimal porosity distribution for minimized ohmic drop across a porous electrode.
Journal of the Electrochemical Society,2010,157(12):A1328-A1334
|
CSCD被引
6
次
|
|
|
|
17.
吴帅锦. 微/纳复合结构硅基负极材料.
化学进展,2018,30(2/3):272-285
|
CSCD被引
3
次
|
|
|
|
18.
Zhao H. A convenient and versatile method to control the electrode microstructure toward high-energy lithium-ion batteries.
Nano Lett,2016,16(7):4686-4690
|
CSCD被引
4
次
|
|
|
|
19.
Jeong G. Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity:an in situ electrochemical dilatometric study.
Electrochimica Acta,2011,56(14):5095-5101
|
CSCD被引
4
次
|
|
|
|
20.
Yu A B. Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures.
Industrial & Engineering Chemistry Research,1996,35(10):3730-3741
|
CSCD被引
8
次
|
|
|
|
|