铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺
Ultrasonic vibration enhanced friction stir welding process of aluminum/steel dissimilar metals
查看参考文献29篇
文摘
|
采用新型超声振动强化搅拌摩擦焊接工艺实现了6061-T6铝合金以及QP980高强钢的搭接焊,对比分析了有无超声作用下,接头的宏观形貌、微观组织和拉伸剪切性能,同时研究了超声振动对焊接载荷的影响。结果表明:焊接前对母材施加超声振动,可以起到软化母材的作用,促进了材料的塑性流动,扩大了铝/钢界面区和焊核区,使更多的钢颗粒随搅拌针旋转进入铝合金侧,在界面区边缘形成钩状结构,进而提高了接头的失效载荷;超声改变了FSW接头断裂位置和断口形貌,提高了接头力学性能,在本实验工艺参数范围内,接头最大的平均失效载荷为4.99kN;当焊接速度为90 mm/min,下压量为0.1mm时,施加超声振动使接头的平均失效载荷提高了0.98kN,拉剪性能提升28.24%;施加超声振动后轴向力Fz、搅拌头扭矩Mt和主轴输出功率分别下降2.46%,6.44%和4.59%。 |
其他语种文摘
|
A novel ultrasonic vibration enhanced friction stir welding(UVeFSW)process was employed to join the 6061-T6 aluminum alloy and QP980 high-strength steel.The macro morphology, microstructure and tensile shear properties of the joint with or without ultrasonic energy were compared and analyzed.Meanwhile,the effects of ultrasonic energy on the welding load were studied. The results show that the ultrasonic vibration applied to the base metal before welding can soften the base metal,promote the plastic flow of the material,expand interface zone and nugget zone of the aluminum/steel,make more steel particles rotate into the aluminum alloy side with the stirring needle,forming a hook structure at the edge of the interface zone which can improve the failure load of the joint.The fracture position and fracture morphology of FSW joint are changed by ultrasonic,and the mechanical properties of FSW joint are improved.Under the welding parameters conducted in the experiment,the maximum average failure load of the joint is 4.99kN.Under the conditions of a welding rate of 90mm/min and a depth of 0.1mm,the application of ultrasonic vibration makes the average failure load of the joint increase by 0.98kN and the tensile shear performance increase by 28.24%.After applying ultrasonic vibration,the axial force Fz,the tool torque Mtand the spindle power decrease by 2.46%,6.44%and 4.59%respectively. |
来源
|
材料工程
,2022,50(1):33-42 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000338
|
关键词
|
铝/钢
;
搭接
;
搅拌摩擦焊
;
超声振动
;
力学性能
;
焊接载荷
|
地址
|
1.
齐鲁工业大学(山东省科学院)机械与汽车工程学院, 济南, 250353
2.
山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 250061
3.
山东省轻质高强金属材料重点实验室, 山东省轻质高强金属材料重点实验室, 济南, 250014
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
山东省自然科学基金青年基金
;
国家自然科学基金
;
齐鲁工业大学(山东省科学院)青年博士合作基金项目
|
文献收藏号
|
CSCD:7150535
|
参考文献 共
29
共2页
|
1.
张琪. 汽车轻量化连接技术的应用现状与发展趋势.
有色金属加工,2019,48(1):1-9
|
CSCD被引
3
次
|
|
|
|
2.
万龙.
铝/钢搅拌摩擦搭接强流变作用下界面行为及力学性能研究,2015
|
CSCD被引
2
次
|
|
|
|
3.
张满. Fe- Al金属间化合物对铝/钢钎焊接头力学性能的影响.
焊接学报,2018,39(1):61-64
|
CSCD被引
5
次
|
|
|
|
4.
Li T. Effect of Ti foil on microstructure and mechanical properties of laser fusion welding of DP590dualphase steel to 6022aluminum alloy.
Materials Science and Engineering: A,2020,796:139929
|
CSCD被引
7
次
|
|
|
|
5.
邓运来. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响.
材料工程,2020,48(4):131-138
|
CSCD被引
5
次
|
|
|
|
6.
赵梓钧. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响.
材料工程,2019,47(9):84-92
|
CSCD被引
3
次
|
|
|
|
7.
王文. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响.
材料工程,2017,45(10):32-38
|
CSCD被引
9
次
|
|
|
|
8.
刘凯龙. 焊接热输入量对铝/钢搅拌摩擦点焊性能影响.
兵器材料科学与工程,2020,43(1):117-121
|
CSCD被引
3
次
|
|
|
|
9.
Van der Rest C. On the joining of steel and aluminium by means of a new friction melt bonding process.
Scripta Materialia,2014,77:25-28
|
CSCD被引
6
次
|
|
|
|
10.
Tanaka T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys.
Scripta Materialia,2009,61:756-759
|
CSCD被引
17
次
|
|
|
|
11.
黄幸. 搅拌摩擦焊工艺参数对超薄铝合金板/高强钢搭接焊接头组织及性能的影响.
有色金属材料与工程,2019,40(1):13-19
|
CSCD被引
1
次
|
|
|
|
12.
张敏. 工具尺寸对铝-钢异种金属搅拌摩擦搭焊接头组织与性能的影响.
机械工程学报,2020,56(6):200-205
|
CSCD被引
2
次
|
|
|
|
13.
Haghshenas M. Friction stir weld assisted diffusion bonding of 5754aluminum alloy to coated high strength steels.
Materials & Design,2014,55:442-449
|
CSCD被引
8
次
|
|
|
|
14.
Chitturi V. Challenges in dissimilar friction stir welding of aluminum 5052and 304stainless steel alloys.
Materials Science and Engineering Technology,2020,51(6):811-816
|
CSCD被引
2
次
|
|
|
|
15.
Chitturi V. Effect of tilt angle and pin depth on dissimilar friction stir lap welded joints of aluminum and steel alloys.
Materials,2019,12(23):3901
|
CSCD被引
1
次
|
|
|
|
16.
Tanaka T. Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel.
Journal of Materials Science,2020,55(7):1-9
|
CSCD被引
2
次
|
|
|
|
17.
杨金帅. 基于Fluent的钢-铝异种金属搅拌摩擦焊数值模拟研究.
焊接技术,2020,49(8):11-15
|
CSCD被引
2
次
|
|
|
|
18.
Shi L. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process.
Scripta Materialia,2016,119:21-26
|
CSCD被引
9
次
|
|
|
|
19.
任航. 铝/钢搅拌摩擦辅助铆接接头界面特性研究.
精密成形工程,2019,11(5):91-97
|
CSCD被引
3
次
|
|
|
|
20.
费鑫江. 激光功率对钢/铝激光辅助搅拌摩擦焊接头的影响.
热加工工艺,2019,48(3):204-209
|
CSCD被引
2
次
|
|
|
|
|