降压开采导致天然气水合物系统状态演化模拟实验
EXPERIMENTAL STUDY ON GAS HYDRATE SYSTEM STATE EVOLVING DURING DEPRESSURIZATION
查看参考文献42篇
文摘
|
天然气水合物是一种重要的潜在替代能源,降压法是现阶段水合物开采的首选方法。水合物降压开采涉及传热、多相渗流、分解相变和储层变形等多个相互影响的物理效应,深入理解其在降压开采过程中的演化规律,对于促进水合物开采效率、实现商业化开发具有重要的指导意义。本文基于一维实验模拟系统,开展了水合物降压开采储层多物理场演化模拟实验,在非均匀温度条件下采用过量气法合成水合物,分析了水合物非均匀性分布特征,探讨了降压过程中样品孔隙压力和温度的演化规律,对比了产气过程与传热演化过程的对应关系。结果表明:水合物合成后温度分布呈两侧高中间低的抛物线形状,水合物分布具有中间多而两侧无的非均匀性特征,且温度回升具有由两侧向中间发展的特点;降压分解产气过程与传热演化过程具有良好的对应性,稳态产气阶段由传热效应控制。控制降压模式、以对流换热替代热传导等方式有益于提升水合物开采产气效率。 |
其他语种文摘
|
Natural gas hydrate has been treated as a potential energy resource for decades. Depressurization is currently the most promising method for hydrate production. However,its efficiency is far from the commercial need. Hydrate production involves heat transfer,multi-phase seepage,phase transition,and reservoir deformation. A thorough understanding of how multiple physical processes evolve during depressurization is of great significance for efficiency enhancement of hydrate production. An experiment was carried out to simulate depressurization induced evolution of the multiple physical processes. Methane hydrate was formed by using the gas excess method under a heterogeneous temperature condition. Evolutions of pore pressures and temperatures were analyzed. A comparison between gas production process and heat transfer process was discussed. Main conclusions are drawn as follow: temperature distribution is parabola-like after hydrate formation,which has higher temperatures in two sides of the sample. In addition,hydrate distribution is inhomogeneous. Pore pressures decrease completely from the outlet to the inlet,and temperatures increase from the two sides into the middle part. The gas production process related to the heat transfer process well,and the stable stage for gas production is controlled by the heat transfer process. It is a feasible way to replace heat conduction by heat convection or choose a slow depressurization strategy to enhance production efficiency for the commercial need. |
来源
|
工程地质学报
,2021,29(6):1916-1925 【核心库】
|
DOI
|
10.13544/j.cnki.jeg.2021-0695
|
关键词
|
天然气水合物
;
降压法
;
水合物饱和度
;
渗流
;
传热
|
地址
|
1.
青岛海洋地质研究所, 自然资源部天然气水合物重点实验室, 青岛, 266237
2.
青岛海洋科学与技术国家实验室,海洋矿产资源评价与探测技术功能实验室, 青岛海洋科学与技术国家实验室,海洋矿产资源评价与探测技术功能实验室, 青岛, 266237
3.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-9665 |
学科
|
海洋学 |
基金
|
国家重点研发计划政府间国际科技创新合作重点专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:7139914
|
参考文献 共
42
共3页
|
1.
Feng J C. Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand.
Applied Energy,2016,174:181-191
|
CSCD被引
5
次
|
|
|
|
2.
Hong H. Analytical modelling of gas production from hydrates in porous media.
Journal of Canadian Petroleum Technology,2003,42(11):45-56
|
CSCD被引
16
次
|
|
|
|
3.
Konno Y. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method.
Energy Conversion and Management,2016,108:439-445
|
CSCD被引
11
次
|
|
|
|
4.
Lee J. An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme.
Energy Conversion and Management,2010,51(12):2510-2515
|
CSCD被引
16
次
|
|
|
|
5.
Li D L. In situ hydrate dissociation using microwave heating: Preliminary study.
Energy Conversion and Management,2008,49(8):2207-2213
|
CSCD被引
13
次
|
|
|
|
6.
Li J. The first offshore natural gas hydrate production test in South China Sea.
China Geology,2018,1(1):5-16
|
CSCD被引
18
次
|
|
|
|
7.
Li Y L. Laboratory study on hydrate production using a slow,multistage depressurization strategy.
Geofluids,2021(3):1-13
|
CSCD被引
1
次
|
|
|
|
8.
Li Y L. Characterization and development of marine natural gas hydrate reservoirs in marine clayey-silt reservoirs: A review and discussion.
Advances in Geo-Energy Research,2021,5:75-86
|
CSCD被引
11
次
|
|
|
|
9.
Li Y L. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A case study.
Energy Science and Engineering,2020,8(5):1438-1449
|
CSCD被引
7
次
|
|
|
|
10.
Li Y L. A sand-production control system for gas production from clayey silt hydrate reservoirs.
China Geology,2019,2:1-13
|
CSCD被引
2
次
|
|
|
|
11.
Liu L L. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interface assumption.
Journal of Petroleum Science and Engineering,2015,133:589-601
|
CSCD被引
4
次
|
|
|
|
12.
Mao P. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea.
Energy Science and Engineering,2021,9:1416-1439
|
CSCD被引
1
次
|
|
|
|
13.
Merey S. Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea.
Journal of Natural Gas Science and Engineering,2017,44:77-95
|
CSCD被引
5
次
|
|
|
|
14.
Numasawa M. Objectives and operation overview of the 2007 JOGMEC/NRCAN/AURORA Mallik 2L-38 gas hydrate production test.
International Conference on Gas Hydrates,2008
|
CSCD被引
1
次
|
|
|
|
15.
Rahim I. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods.
Applied Thermal Engineering,2015,90:120-126
|
CSCD被引
10
次
|
|
|
|
16.
Schoderbek D.
ConocoPhillips gas hydrate production test final technical report,2013
|
CSCD被引
3
次
|
|
|
|
17.
Sloan E D. Fundamental principles and applications of natural gas hydrates.
Nature,2003,426:353-363
|
CSCD被引
223
次
|
|
|
|
18.
Sun X. 1-D modeling of hydrate depressurization in porous media.
Transport in Porous Media,2005,58:315-338
|
CSCD被引
24
次
|
|
|
|
19.
Terzariol M. Maximum recoverable gas from hydrate bearing sediments by depressurization.
Energy,2017,141:1622-1628
|
CSCD被引
4
次
|
|
|
|
20.
Wang B. Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments.
Applied Energy,2020,262:114559
|
CSCD被引
9
次
|
|
|
|
|