中国东部大别苏鲁造山带壳内低速高导异常成因探究
Study on the origins of low-velocity and high-conductivity anomalies in the crust of Dabie-Sulu orogenic belt,eastern China
查看参考文献101篇
文摘
|
地震学和大地电磁研究表明,中国东部大别苏鲁造山带壳内广泛存在低速高导异常.本文首次较系统地梳理了前人针对大别苏鲁造山带开展的地震学和大地电磁观测结果以及岩石矿物波速和电导率的高温高压实验结果,建立了岩石波速、电导率随深度变化的模型,探究了大别苏鲁造山带壳内低速高导异常的可能成因以及形成的基本条件.大别苏鲁造山带壳内低速高导的成因复杂多样,主要有:含水矿物模型、部分熔融模型、高电导矿物模型、各向异性模型、含盐流体模型和名义无水矿物模型等.我们认为普遍低热流的大别造山带中下地壳的低速异常层和高导异常可能与波速各向异性明显的成岩矿物有关,高导异常可能与电性各向异性明显的成岩矿物有关.普遍高热流的苏鲁造山带中上地壳的低速异常可能与含水矿物脱水熔融和波速各向异性较大的成岩矿物有关,下地壳的低速异常可能是高压变质岩中角闪岩相退变质作用的结果;而下地壳的高导异常可能与含水矿物脱水以及名义无水矿物中的结构水有关.以上结论对于我们深入认识大别苏鲁造山带壳内物质组成、地质作用以及地球内部动力学过程具有重要意义. |
其他语种文摘
|
Seismological and magnetotelluric studies indicate that there are widespread low-velocity and high-conductivity anomalies in the crust of the Dabie-Sulu orogenic belt,eastern China. This paper systematically summarises the seismological and magnetotelluric observation results of the Dabie-Sulu orogenic belt,as well as the experimental results of wave velocity and electrical conductivity of rocks and minerals under high temperature and pressure. Taking the temperature of the Dabie-Sulu orogenic belt into account,the models of rock wave velocity and conductivity changing with depth are established. In this way, the possible causes and basic conditions for the formation of low-velocity and high-conductivity anomalies in the Dabie-Sulu orogenic belt are discussed in detail. The origins of low velocity and high conductivity in the crust of the Dabie-Sulu orogenic belt are complex and diverse,mainly including hydrous minerals model,partial melting model,high-conductivity mineral model,anisotropic model,saline fluid model and nominal anhydrous mineral model. We think that the low-velocity anomalies in the middle and lower crust of the Dabie orogenic belt with low heat flow may be related to the diagenetic minerals with obvious anisotropy of wave velocity,and the high-conductivity anomalies may be related to the diagenetic minerals with obvious anisotropy of electrical property. The low-velocity anomalies in the middle and upper crust of the Sulu orogenic belt with high heat flow may be related to the dehydration and melting of hydrous minerals and diagenetic minerals with high-velocity anisotropy;the low-velocity anomalies in the lower crust may be the result of amphibolite facies retrograde metamorphism in the high-pressure metamorphic rocks; and the high-conductivity anomalies in the lower crust may be related to dehydration of hydrous minerals and structural water in nominal anhydrous minerals. Finally,we point out the problems of the current research and prospects of future research. These conclusions are of great significance for us to further understand the crustal composition,the geological process,and the geodynamics of the crust of the Dabie-Sulu orogenic belt. |
来源
|
地球物理学进展
,2021,36(6):2371-2391 【核心库】
|
DOI
|
10.6038/pg2021EE0400
|
关键词
|
大别苏鲁造山带
;
低速高导异常
;
高温高压实验
;
波速
;
电导率
|
地址
|
1.
中国科学院地球化学研究所, 地球内部物质高温高压中国科学院重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
浙江大学地球科学学院, 浙江省地学大数据与地球深部资源重点实验室, 杭州, 310027
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-2903 |
学科
|
地球物理学 |
基金
|
中国科学院前沿科学研究计划从0到1原始创新项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7133123
|
参考文献 共
101
共6页
|
1.
Anderson D L. Large igneous provinces,delamination,and fertile mantle.
Elements,2005,1(5):271-275
|
CSCD被引
23
次
|
|
|
|
2.
Babuska V. Anisotropy of VP and VS in rock-forming minerals.
Journal of Geophysics,1981,50(1):1-6
|
CSCD被引
3
次
|
|
|
|
3.
Bai Z M. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles.
Journal of Geophysics and Engineering,2007,4(4):436-442
|
CSCD被引
11
次
|
|
|
|
4.
Chen R X. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental subduction-zone metamorphism.
Chemical Geology,2011,281(1/2):103-124
|
CSCD被引
16
次
|
|
|
|
5.
Dai L D. Influence of temperature, pressure,and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications.
Geochemistry, Geophysics,Geosystems,2016,17(6):2394-2407
|
CSCD被引
6
次
|
|
|
|
6.
Dai L D. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure.
Physics of the Earth and Planetary Interiors,2009,176(1/2):83-88
|
CSCD被引
17
次
|
|
|
|
7.
Forsyth D W. Imaging the deep seismic structure beneath a mid-ocean ridge:the MELT experiment.
Science,1998,280(5367):1215-1218
|
CSCD被引
14
次
|
|
|
|
8.
Frost D J. The redox state of Earth's mantle.
Annual Review of Earth and Planet Sciences,2008,36:389-420
|
CSCD被引
78
次
|
|
|
|
9.
Gao S. Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections:A comparative study from the North China craton.
Journal of Geophysical Research:Solid Earth,2000,105(B8):18965-18976
|
CSCD被引
1
次
|
|
|
|
10.
Gong B. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet.
Physics and Chemistry of Minerals,2007,34(10):687-698
|
CSCD被引
19
次
|
|
|
|
11.
Gupta H K. Fluids below the hypocentral region of Latur earthquake,India:Geophysical indicators.
Geophysical Research Letters,1996,23(13):1569-1572
|
CSCD被引
9
次
|
|
|
|
12.
Hashin Z. A variational approach to the theory of the elastic behaviour of multiphase materials.
Journal of the Mechanics and Physics of Solids,1963,11(2):127-140
|
CSCD被引
183
次
|
|
|
|
13.
He L J. Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt.
Earth and Planetary Science Letters,2009,277(3/4):525-538
|
CSCD被引
9
次
|
|
|
|
14.
Huang Y. Saline aqueous fluid circulation in mantle wedge inferred from olivine wetting properties.
Nature Communications,2019,10(1):1-10
|
CSCD被引
4
次
|
|
|
|
15.
Hyndman R D. Water in the lower continental crust: modelling magnetotelluric and seismic reflection results.
Geophysical Journal International,1989,98(2):343-365
|
CSCD被引
15
次
|
|
|
|
16.
Hyndman R D. The origin of electrically conductive lower continental crust: saline water or graphite?.
Physics of the Earth and Planetary Interiors,1993,81(1/4):325-345
|
CSCD被引
15
次
|
|
|
|
17.
Ji S C. Microstructures, petrofabrics and seismic properties of ultra high-pressure eclogites from Sulu region,China:implications for rheology of subducted continental crust and origin of mantle reflections.
Tectonophysics,2003,370(1/4):49-76
|
CSCD被引
22
次
|
|
|
|
18.
Ji S C.
Handbook of seismic properties of minerals,rocks and ores,2002
|
CSCD被引
6
次
|
|
|
|
19.
Karato S. The role of hydrogen in the electrical conductivity of the upper mantle.
Nature,1990,347:272-273
|
CSCD被引
64
次
|
|
|
|
20.
Kern H. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP)metamorphic belt,Central China:implications for the composition and delamination of the lower crust.
Tectonophysics,1999,301(3/4):191-215
|
CSCD被引
39
次
|
|
|
|
|