旋转对称金纳米颗粒在生物成像中的优化
Rotation-Symmetrical Gold Nanoparticles Optimized for Biological Imaging
查看参考文献28篇
文摘
|
金属纳米颗粒具有局域表面等离子共振效应,由于其独特的光学特性、易控的表面化学能力和优良的生物相容性,被广泛应用于生物成像领域。针对旋转对称金纳米颗粒(金纳米旋转椭球、纳米圆柱和纳米棒)在生物成像中的应用,利用T矩阵方法和介电函数尺寸修正模型,研究了旋转对称金纳米颗粒的共振后向光散射特性,获得了最优后向光散射特性及对应的最佳尺寸参数。考虑了生物成像中使用的三个典型激发波长(830,840,900 nm),结果表明,纵横比为3.7、长度为146nm的金纳米旋转椭球在入射光波长900 nm处具有最优的后向光散射特性。此外,分析了入射光波长和生物组织折射率对优化结果的影响,结果表明,优化后的三种旋转对称金纳米颗粒的体积后向散射系数和尺寸参数随入射光波长的增大而增大,随组织折射率的增大而减小。最后给出了体积后向散射系数大于其最大值的90%时对应的尺寸参数范围。研究结果为三种旋转对称金纳米颗粒在生物成像中的应用提供了理论指导。 |
其他语种文摘
|
Metal nanoparticles possess the localized surface plasmon resonance(LSPR)effect and are widely utilized in the field of biological imaging due to their unique optical properties,easily controlled surface chemistry,and excellent biocompatibility. For the application of rotation-symmetrical gold nanoparticles(nanospheroid, nanocylinder,and nanorod)in biological imaging,the light backscattering properties of rotation-symmetrical gold nanoparticles were studied by using the T-matrix method and dielectric function size correction model.The optimal light backscattering properties and the corresponding optimal size parameters were obtained.Three typical excitation wavelengths(830,840and 900 nm)used in biological imaging were considered.The results show that the gold nanospheroid with an aspect ratio of 3.7and a length of 146nm has the optimal light backscattering properties at the incident light wavelength of 900 nm.In addition,the effects of incident light wavelength and tissue refractive index on the optimization results were analyzed.The results show that the volume backscattering coefficients and the size parameters of the optimized gold nanoparticles increase with the increase of incident light wavelength and decrease with the increase of tissue refractive index.Finally,the ranges of size parameters maintaining the volume backscattering coefficients greater than 90%of the maximum value were calculated.This study provides theoretical guidance for the application of three kinds of rotation-symmetrical gold nanoparticles in biological imaging. |
来源
|
光学学报
,2021,41(23):2329001 【核心库】
|
DOI
|
10.3788/AOS202141.2329001
|
关键词
|
散射
;
后向光散射
;
局域表面等离激元共振
;
生物成像
;
T矩阵方法
;
优化
|
地址
|
1.
新疆师范大学物理与电子工程学院, 新疆, 乌鲁木齐, 830054
2.
中国科学院新疆天文台, 新疆, 乌鲁木齐, 830011
3.
新疆师范大学新型光源与微纳光学实验室, 新疆, 乌鲁木齐, 830054
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
新疆维吾尔自治区自然科学基金
|
文献收藏号
|
CSCD:7132474
|
参考文献 共
28
共2页
|
1.
Wijesooriya C S. Optical imaging of the nanoscale structure and dynamics of biological membranes.
Analytical Chemistry,2019,91(1):425-440
|
CSCD被引
1
次
|
|
|
|
2.
江丽雯. 基于倏逝波界面散射的单个纳米颗粒无标记成像.
光学学报,2018,38(6):0624001
|
CSCD被引
3
次
|
|
|
|
3.
Borran A A. Gold nanoparticles for radiosensitizing and imaging of cancer cells.
Radiation Physics and Chemistry,2018,152:137-144
|
CSCD被引
2
次
|
|
|
|
4.
Sun D L. A low cost mobile phone darkfield microscope for nanoparticle-based quantitative studies.
Biosensors and Bioelectronics,2018,99:513-518
|
CSCD被引
3
次
|
|
|
|
5.
蔡双双. 基于强度传输方程和微分干涉相差显微镜的定量相位成像及其在乳腺癌诊断中的应用.
中国激光,2018,45(3):0307015
|
CSCD被引
4
次
|
|
|
|
6.
Barnes W L. Comparing experiment and theory in plasmonics.
Journal of Optics A:Pure and Applied Optics,2009,11(11):114002
|
CSCD被引
2
次
|
|
|
|
7.
Loo C. Gold nanoshell bioconjugates for molecular imaging in living cells.
Optics Letters,2005,30(9):1012-1014
|
CSCD被引
4
次
|
|
|
|
8.
Yu C X. Identity profiling of cell surface markers by multiplex gold nanorod probes.
Nano Letters,2007,7(8):2300-2306
|
CSCD被引
9
次
|
|
|
|
9.
Agrawal A. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells.
Journal of Biomedical Optics,2006,11(4):041121
|
CSCD被引
1
次
|
|
|
|
10.
Munoz-Ortiz T. Molecular imaging of infarcted heart by biofunctionalized gold nanoshells.
Advanced Healthcare Materials,2021,10(10):e2002186
|
CSCD被引
3
次
|
|
|
|
11.
Loo C. Nanoshell-enabled photonics-based imaging and therapy of cancer.
Technology in Cancer Research & Treatment,2004,3(1):33-40
|
CSCD被引
17
次
|
|
|
|
12.
Huang X. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods.
Journal of the American Chemical Society,2006,128(6):2115-2120
|
CSCD被引
185
次
|
|
|
|
13.
Chen J Y. Gold nanocages:bioconjugation and their potential use as optical imaging contrast agents.
Nano Letters,2005,5(3):473-477
|
CSCD被引
27
次
|
|
|
|
14.
Yasun E. Hollow micro and nanostructures for therapeutic and imaging applications.
Journal of Drug Delivery Science and Technology,2020,60:102094
|
CSCD被引
2
次
|
|
|
|
15.
Karooby E. Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy.
Optical Engineering,2019,58(6):065102
|
CSCD被引
1
次
|
|
|
|
16.
Tuersun P. Optimal dimensions of gold nanoshells for light backscattering and absorption based applications.
Journal of Quantitative Spectroscopy and Radiative Transfer,2014,146:468-474
|
CSCD被引
2
次
|
|
|
|
17.
Javier D J. Metal-based nanorods as molecule-specific contrast agents for reflectance imaging in 3D tissues.
Journal of Nanophotonics,2008,2(1):023506
|
CSCD被引
1
次
|
|
|
|
18.
杨玉东. 金纳米棒的光学性质及其在生物医学成像和光热疗法中的应用.
激光与光电子学进展,2010,47(7):071702
|
CSCD被引
7
次
|
|
|
|
19.
Pang B. Putting gold nanocages to work for optical imaging,controlled release and cancer theranostics.
Nanomedicine,2016,11(13):1715-1728
|
CSCD被引
8
次
|
|
|
|
20.
Demeritte T. Gold nanocage assemblies for selective second harmonic generation imaging of cancer cell.
Chemistry-A European Journal,2014,20(4):1017-1022
|
CSCD被引
3
次
|
|
|
|
|