云南马关都龙锡锌多金属矿床绿泥石成因矿物学
Genetic mineralogy of chlorite in the Dulong Sn-Zn polymetallic deposit in Maguan, Yunnan Province, China
查看参考文献32篇
文摘
|
云南马关都龙锡锌多金属矿床是我国最大的锡石硫化物矿床之一。都龙矿区绿泥石分布广泛,与成矿关系密切。本文对矿区铜街-曼家寨矿段中部F1断层不同深度的绿泥石进行了电子探针主量元素以及LA-ICPMS微量元素分析。结果表明,根据矿石类型、矿物组合不同,矿区绿泥石可分为3类。第1类绿泥石(Chl-I)产于矽卡岩型矿石中,常与黑云母、闪锌矿和石英共生;第2类绿泥石(Chl-II)产于石英萤石脉内,常与锡石密切共生;第3类绿泥石(Chl-III)产于碳酸盐型矿石,常与方解石和闪锌矿密切共生。垂向上至下而上具有从Chl-I→Chl-II→Chl-III分带的特点,这3类绿泥石均为三八面体结构富铁-镁种属绿泥石,暗示其形成于较还原的环境。Mg~(2+)与Fe~(2+)替代以及Tschermark替代是矿区绿泥石中主量元素替代方式。绿泥石地质温度计计算结果为203~289 ℃,表明成矿作用发生在中低温环境,3类绿泥石温度从Chl-I至Chl-III温度逐渐降低。结合其产出特征,推测这3类绿泥石可能是岩浆热液成矿过程不同阶段的产物。3类绿泥石中,随着与隐伏岩体的距离增加, Ca、Mn、Sr含量逐渐升高,而Sc、Ti、Ga逐渐降低,这可能与热液流体运移过程温度变化以及与围岩水岩反应有关。这些特征元素含量的变化具有指示绿泥石形成与岩体远近关系的潜力,深入研究绿泥石微量元素在矿区空间上的分布规律对深部探矿找矿工作具有重要的指导意义。 |
其他语种文摘
|
The Dulong Sn-Zn polymetallic deposit, located in Maguan County, Yunnan Province, is one of the largest Sn-polymetallic deposits in China.In the Dulong ore district, chlorite is widely distributed and is closely related to the tin mineralization.In this paper, the major elements and trace elements of chlorites at different depths of the F1 fault in the central part of the Tongjie-Manjiazhai ore block have been analyzed by using EPMA and LA-ICPMS.Based on different ore types and mineral assemblages of the Dulong deposit, the chlorite can be classified into three types.The first type of chlorite(Chl-I)occurs in skarn ores and is often co-existed with biotite, sphalerite, and quartz;The second type of chlorite(Chl-II)occurs in quartz-fluorite veins and is often closely associated with cassiterite;The third type of chlorite(Chl-III)occurs in carbonate type ores and is often closely associated with calcite and sphalerite;Three types of chlorites are distributed at a vertical profile from the bottom to the top with the chlorite zones varying from the Chl-I, to the Chl-II, to the Chl-III subsequently.The Dulong chlorites are all Fe-rich or Mg-rich chlorites with trioctahedral structure, indicating that they were formed in a relatively reduced environment.The substitution mechanisms of major elements in the Dulong chlorite are mainly represented by the Fe~(2+)-Mg~(2+)and Tschermark substitutions.The calculated results using the chlorite geothermometer range from 203℃ to 289 ℃, indicating that the mineralization occurred under a medium-low temperature condition.From the Chl-I to the Chl-II, to the Chl-III, their temperatures are gradually decreased, suggesting that these three types of chlorites could represent products of different stages of the magmatic hydrothermal mineralization.With the increase of distance away from the concealed granite, the Ca, Mn, and S contents of these three types of chlorites are gradually increased, while their Sc, Ti, and Ga contents are gradually decreased.This may be related to the temperature change of hydrothermal fluid and the water-rock reaction with wallrock by the hydrothermal fluid in its migration process.The variation of contents of those characteristic trace elements in the Dulong chlorites has the potential to indicate the distance of their locations away from the concealed granite.Therefore, the further study on the spatial distribution regulation of those trace elements of chlorites in the Dulong deposit has important guiding significance for the mineral prospecting in depth. |
来源
|
矿物学报
,2022,42(1):1-13 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2021.41.091
|
关键词
|
绿泥石
;
温度计
;
LA-ICMPS微量元素
;
都龙锡锌多金属矿床
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
云南华联锌铟股份有限公司科研项目
;
贵州省自然科学基金
|
文献收藏号
|
CSCD:7130705
|
参考文献 共
32
共2页
|
1.
Cooke D R. Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits:detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration.
Geochemistry Exploration Environment Analysis,2020
|
CSCD被引
5
次
|
|
|
|
2.
Cooke D R. New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoring,fertility assessments.
Economic Geology,2014,18:127-152
|
CSCD被引
4
次
|
|
|
|
3.
Chang Z S. Exploration tools for linked porphyry,epithermal deposits:example from the Mankayan intrusion-centered Cu-Au District,Luzon,Philippines.
Economic Geology,2011,106:1365-1398
|
CSCD被引
59
次
|
|
|
|
4.
Wilkinson J J. The chlorite proximitor:a new tool for detecting porphyry ore deposits.
Journal of Geochemical Exploration,2015,152:10-26
|
CSCD被引
29
次
|
|
|
|
5.
Mao M. Apatite trace element compositions:a robust new tool for mineral exploration.
Economic Geology,2016,111:1187-1222
|
CSCD被引
29
次
|
|
|
|
6.
Martinez-Serrano R G. Chemical variations in chlorite at the Los Humeros geothermal system,Mexico.
Clays and Clay Minerals,1998,46(6):615-628
|
CSCD被引
8
次
|
|
|
|
7.
Inoue A. Formation of clay minerals in hydrothermal environments.
Origin and Mineralogy of Clays,1995:268-329
|
CSCD被引
36
次
|
|
|
|
8.
Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature.
Clay Minerals,1988,23(4):471-485
|
CSCD被引
90
次
|
|
|
|
9.
Kranidiotis P. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit,Matagami,Quebec.
Economic Geology,1987,82(7):1898-1991
|
CSCD被引
54
次
|
|
|
|
10.
Jowett C. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer.
Geological Association of Canada + Mac + Seg Joint Meeting,1991:A62
|
CSCD被引
2
次
|
|
|
|
11.
Xiao B. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems:insights from chlorite chemistry.
Ore Geology Reviews,2018,102:437-448
|
CSCD被引
8
次
|
|
|
|
12.
Xiao B. Chlorite and epidote chemistry of the Yandong Cu deposit,NW China:metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan.
Ore Geology Reviews,2018,100:168-182
|
CSCD被引
11
次
|
|
|
|
13.
Huang J H. Alteration zonation and short wavelength infrared(SWIR)characteristics of the Honghai VMS Cu-Zn deposit,Eastern Tianshan,NW China.
Ore Geology Reviews,2018,100:263-279
|
CSCD被引
9
次
|
|
|
|
14.
Chu G B. Chlorite chemistry of Tongshankou porphyry-related Cu-Mo-W skarn deposit,eastern china:implications for hydrothermal fluid evolution and exploration vectoring to concealed orebodies.
Ore Geology Reviews,2020
|
CSCD被引
1
次
|
|
|
|
15.
陶志华. 滇东南都龙矿区南北向断裂构造演化与控矿.
矿物学报,2016,36(4):497-502
|
CSCD被引
5
次
|
|
|
|
16.
刘玉平. 都龙锡锌多金属矿床成矿物质来源的同位素示踪.
地质地球化学,2000,28(4):75-82
|
CSCD被引
44
次
|
|
|
|
17.
刘玉平. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件.
岩石学报,2007,23(5):967-976
|
CSCD被引
139
次
|
|
|
|
18.
蓝江波. 滇东南燕山晚期老君山花岗岩的地球化学特征与年龄谱系.
矿物学报,2016,36(4):441-454
|
CSCD被引
22
次
|
|
|
|
19.
叶霖. 云南都龙锡锌多金属矿床成矿阶段与成矿流体.
矿物学报,2016,36(4):503-509
|
CSCD被引
17
次
|
|
|
|
20.
廖震. 都龙锡锌矿床绿泥石特征及其成矿意义.
矿床地质,2010,29(1):169-176
|
CSCD被引
32
次
|
|
|
|
|