排序集抽样下Inverse Rayleigh分布的Fisher信息量及其在参数估计中的应用
Fisher Information for Inverse Rayleigh Distribution in Ranked Set Sampling with Application to Parameter Estimation
查看参考文献24篇
文摘
|
文章分别在简单随机抽样和排序集抽样下研究了Inverse Rayleigh分布中对应样本所含刻度参数$\theta $的Fisher信息量.数值结果表示,同等样本容量的排序集样本比简单随机样本提供更多关于$\theta $的信息.接着分别基于简单随机样本和排序集样本构造了 $\theta $的一些优良估计,并对估计结果进行了数值比较. |
其他语种文摘
|
In this article, Fisher information in the corresponding samples about the scale parameter $\theta $ from Inverse Rayleigh distribution under simple random sampling and ranked set sampling will be respectively studied. The numerical results show ranked set sample carry more information about $\theta $ than a simple random sample of equivalent size. Then we respectively use the simple random sample and ranked set sample to construct some optimal estimators of $\theta $. The numerical results of these estimators are compared. |
来源
|
系统科学与数学
,2022,42(1):141-152 【核心库】
|
关键词
|
排序集抽样
;
极大似然估计
;
最优线性无偏估计
;
最优线性同变估计
|
地址
|
1.
吉首大学数学与统计学院, 吉首, 416000
2.
湖南医药学院医学人文与信息管理学院, 怀化, 418000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0577 |
学科
|
数学 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
湖南省自然科学青年基金
;
湖南省普通高校青年骨干教师培养对象计划项目
;
2020年湖南省教学改革项目
;
吉首大学2020年度研究生校级科研项目
;
吉首大学2021年实验室开放基金项目
|
文献收藏号
|
CSCD:7130545
|
参考文献 共
24
共2页
|
1.
Voda V G. On the inverse Rayleigh random variable.
Reports of Statistical Application Research of the Union of Japanese Scientists and Engineers,1972,19(4):13-21
|
CSCD被引
2
次
|
|
|
|
2.
Mukherjee S P. Bivariate inverse Rayleigh distributions in reliability studies.
Journal of the Indian Statistical Association,1984,2:23-31
|
CSCD被引
3
次
|
|
|
|
3.
Dey S. Bayesian intervals for parameter and reliability for inverse Rayleigh distribution.
Journal of Ravishankar University,2005,18(B):57-68
|
CSCD被引
1
次
|
|
|
|
4.
Mukherjee S P. A percentile estimator of the inverse Rayleigh parameter.
IAPQR Transactions,1996,21(1):63-65
|
CSCD被引
1
次
|
|
|
|
5.
Maleki Jebely F. Efficient estimation of the PDF and the CDF of the inverse Rayleigh distribution.
Journal of Statistical Computation and Simulation,2018,88(1):75-88
|
CSCD被引
4
次
|
|
|
|
6.
Mohsin M. Comparison of negative moment estimator with maximum likelihood estimator of inverse Rayleigh distribution.
Pakistan Journal of Statistics and Operation Research,2005,1(1):63-65
|
CSCD被引
2
次
|
|
|
|
7.
Soliman A. Estimation and prediction from inverse Rayleigh distribution based on lower record values.
Applied Mathematical Sciences,2010,4(2):3057-3066
|
CSCD被引
3
次
|
|
|
|
8.
Fan G B. Bayes estimation for inverse Rayleigh model under different loss functions.
Research Journal of Applied Sciences, Engineering and Technology,2015,9(12):1115-1118
|
CSCD被引
2
次
|
|
|
|
9.
Dey S. Bayesian estimation of the parameter and reliability function of an inverse Rayleigh distribution.
Malaysian Journal of Mathematical Sciences,2012,6(1):113-124
|
CSCD被引
2
次
|
|
|
|
10.
Anber N. Estimation of two parameter powered inverse rayleigh distribution.
Pakistan Journal of Statistics,2020,36(2):117-133
|
CSCD被引
1
次
|
|
|
|
11.
Mclntyre G A. A method of unbiased selective sampling, using ranked sets.
Australian Journal of Agricultural Research,1952,3(4):385-390
|
CSCD被引
30
次
|
|
|
|
12.
Takahasi K. On unbiased estimates of the population mean based on the sample stratified by means of ordering.
Annals of the Institute of Statistical Mathematics,1968,20(1):1-31
|
CSCD被引
22
次
|
|
|
|
13.
He X F. Maximum likelihood estimators of the parameters of the log-logistic distribution.
Statistical Papers,2020,61(5):1875-1892
|
CSCD被引
7
次
|
|
|
|
14.
Qian W S. Parameter estimation for the Pareto distribution based on ranked set sampling.
Statistical Papers,2021,62(1):395-417
|
CSCD被引
8
次
|
|
|
|
15.
杨瑞. 排序集抽样下Power-law分布中参数的参数估计.
系统科学与数学,2020,40(2):308-317
|
CSCD被引
3
次
|
|
|
|
16.
Abu-Dayyeh W. Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling.
Statistical Papers,2013,54(1):207-225
|
CSCD被引
8
次
|
|
|
|
17.
Lesitha G. Estimation of the scale parameter of a log-logistic distribution.
Metrika,2013,76(3):427-448
|
CSCD被引
8
次
|
|
|
|
18.
Lehmann E L.
Theory of Point Estimation,1983
|
CSCD被引
18
次
|
|
|
|
19.
Mehrotra K. Unbiased estimation of parameters by order statistics in the case of censored samples.
Biometrika,1974,61(3):601-606
|
CSCD被引
8
次
|
|
|
|
20.
Chen W X. Modified maximum likelihood estimator of scale parameter using moving extremes ranked set sampling.
Communications in Statistics Simulation and Computation,2016,45(6):2232-2240
|
CSCD被引
13
次
|
|
|
|
|