帮助 关于我们

返回检索结果

基于岭回归模型大数据最优子抽样算法研究
Optimal Subsampling Algorithm for Big Data Ridge Regression

查看参考文献15篇

文摘 随着大数据时代的来临,为了提高计算效率,Wang等(2018)提出基于logistic回归的最优子抽样算法,在保证参数估计精度的前提下,节省了大量的运算时间.为解决变量间的多重共线性,文章提出基于岭回归模型的最优子抽样算法,并证明岭回归模型中参数估计的一致性与渐近正态性.利用数值模拟与实证分析对最优子抽样算法进行评估,结果表明,利用最优子抽样构建的模型与全样本构建的模型在参数估计的精度相近,并大幅减少了运算时间.
其他语种文摘 With the advent of the big data era, in order to improve computational efficiency, Wang, et al.(2018) proposed an optimal subsampling algorithm for logistic regression, which provides a better tradeoff between estimation efficiency and computational efficiency. To solve the problem of multicollinearity among variables, this paper proposes an optimal subsampling algorithm in the context of ridge regression, and proves the consistency and asymptotic normality of the estimator from optimal subsampling algorithm. Numerical experiments are carried out on both simulated and real data to evaluate the proposed methods. Results show that the optimal subsampling algorithm produces similar results compared with the full data analysis, while significantly reducing the computational costs.
来源 系统科学与数学 ,2022,42(1):50-63 【核心库】
关键词 大数据 ; 最优子抽样算法 ; 岭回归
地址

青岛大学经济学院, 青岛, 266100

语种 中文
文献类型 研究性论文
ISSN 1000-0577
学科 数学
基金 国家社会科学基金
文献收藏号 CSCD:7130538

参考文献 共 15 共1页

1.  Ma P. A statistical perspective on algorithmic leveraging. The Journal of Machine Learning Research,2015,16(1):861-911 CSCD被引 10    
2.  Wang H Y. Information-based optimal subdata selected for big data linear regression. Journal of the American Statistical Association,2018,114(522):393-405 CSCD被引 8    
3.  Wang H Y. Optimal subsampling for large sample logistic regression. Journal of the American Statistical Association,2018,113(522):829-844 CSCD被引 14    
4.  Kim J K W. Sampling techniques for big data analysis. International Statistical Review,2019,87:177-191 CSCD被引 1    
5.  米子川. 面向SNS的大数据捕获移出模型抽样估计. 数理统计与管理,2016,35(3):424-434 CSCD被引 2    
6.  金勇进. 大数据背景下非概率抽样的统计推断问题. 统计研究,2016,33(3):11-17 CSCD被引 4    
7.  Arthur E H. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics,1970,12(1):55-67 CSCD被引 1    
8.  Dwivedi T D. Finite sample properities of ridge estimators. Technometrics,1980,22(2):205-212 CSCD被引 2    
9.  Lee T. Algorithm as 223: Optimum ridge parameter selection. Journal of the Royal Statistical Society Series C-Applied Statistics,1987,36(1):112-118 CSCD被引 2    
10.  Kazuhiro Ohtani. On small sample properties of the almost unbiased generalized ridge estimator. Communication in Statistical-Theory and Methods,1986,15(5):1571-1578 CSCD被引 1    
11.  Kozumi H. The general expressions for the moments of lawless and Wang's ordinary ridge regression estimator. Communication in Statistical-Theory and Methods,1994,23(100):2755-2774 CSCD被引 1    
12.  Ai-Hassan Y M. Performance of a new ridge regression estimator. Journal of the Association of Arab Universities for Basic and Applied Sciences,2010,9(1):23-26 CSCD被引 2    
13.  Schomaker M. Shrinkage averaging estimation. Statistical Papers,2012,53(4):1015-1034 CSCD被引 2    
14.  喻达磊. 岭回归中基于广义交叉核实法的最优模型平均估计. 系统科学与数学,2018,38(6):652-661 CSCD被引 2    
15.  Van der Vaart A W. Asymptotic Statistics,2000 CSCD被引 24    
引证文献 2

1 郑晏 基于功率信号分析的光伏电站故障诊断方法 电力系统及其自动化学报,2024,36(5):150-158
CSCD被引 0 次

2 熊正榆 异方差大数据下联合均值与方差模型的α-最优子抽样 系统科学与数学,2024,44(7):2146-2172
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号