帮助 关于我们

返回检索结果

基于直觉模糊熵的混合粒子群优化算法
Hybrid Particle Swarm Optimization Algorithm Based on Intuitionistic Fuzzy Entropy

查看参考文献16篇

文摘 为了提升粒子群算法的全局寻优与局部精细搜索能力并加快收敛速度,提出了基于直觉模糊熵的混合粒子群优化算法.该算法采用粒子的历史最优解信息构造直觉模糊熵的自适应函数,并将熵值作为扰动因子动态调节惯性权重,同时建立自适应全局最优粒子学习策略对扰动后的粒子进行训练,在保持多样性传播的基础上选择学习对象,使粒子探索更多新区域,实现种群间的协作与并行进化.通过仿真实验,将本文算法与两种衍生算法以及其他改进粒子群算法在11个测试函数上进行比较,结果表明,本算法在求解精度、收敛速度和寻优效率上均有更好表现.
其他语种文摘 In order to improve the global and local fine search capabilities of the particle swarm algorithm and accelerate the convergence speed, hybrid particle swarm optimization algorithm based on intuitive fuzzy entropy is proposed. The algorithm constructs an adaptive function of intuitive fuzzy entropy by using the information of the historical optimal solution of particles, and uses the entropy value as a disturbance factor to dynamically adjust the inertia weight. At the same time, it establishes an adaptive global optimal particle learning strategy to train the disturbed particles, chooses learning objects based on maintaining the diversity of propagation, enables the particles to explore more new areas, and realizes the cooperation and parallel evolution among populations. Through simulation experiments, the algorithm is compared with two derivation algorithms and other improved particle swarm optimization algorithms on 11 test functions. The results show that the algorithm performs better in solving accuracy, convergence speed and optimization efficiency.
来源 电子学报 ,2021,49(12):2381-2389 【核心库】
DOI 10.12263/DZXB.20201387
关键词 直觉模糊熵 ; 扰动因子 ; 粒子群算法 ; 自适应学习 ; 协作与并行进化
地址

西北大学信息科学与技术学院, 陕西, 西安, 710127

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家重点研发计划项目 ;  国家重大仪器专项 ;  国家自然科学基金 ;  国家自然科学基金 ;  国家自然科学基金 ;  陕西省自然科学基金
文献收藏号 CSCD:7127416

参考文献 共 16 共1页

1.  Kennedy J. Particle swarm optimization. Proceedings of ICNN' 95-International Conference on Neural Networks,1995:1942-1948 CSCD被引 13    
2.  Wang Z. The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm. Nuclear Engineering and Design,2018,326(10):79-86 CSCD被引 6    
3.  Li M. An improved particle swarm optimization algorithm with adaptive inertia weights. International Journal of Information Technology & Decision Making,2019,18(3):833-866 CSCD被引 6    
4.  Wang Y K. Hybrid quantum particle swarm optimization algorithm and its application. Science China (Information Sciences),2020,63(5):203-205 CSCD被引 1    
5.  Wang F. A hybrid particle swarm optimization algorithm using adaptive learning strategy. Information Sciences,2018,436(4):162-177 CSCD被引 13    
6.  Cao L L. A neighbor-based learning particle swarm optimizer with short-term and longterm memory for dynamic optimization problems. Information Sciences,2018,453(2):463-485 CSCD被引 2    
7.  Wei G. Dynamic multi-objective optimization of chemical process based on bare bones particle swarm optimization. Chemical Engineering Transactions,2018,71(9):811-816 CSCD被引 1    
8.  Ouyang H B. Improved global-bestguided particle swarm optimization with learning operation for global optimization problems. Applied Soft Computing,2017,52(3):987-1008 CSCD被引 6    
9.  Krawczak M. On matching of intuitionistic fuzzy sets. Information Sciences,2020,517(3):254-274 CSCD被引 4    
10.  苏丁为. 基于直觉模糊熵的粒子群多目标优化. 计算机科学,2016,43(8):262-266 CSCD被引 3    
11.  Dokmanic I. Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine,2015,32(6):12-30 CSCD被引 5    
12.  王毅. 一种直觉模糊熵的构造方法. 控制与决策,2007,22(12):1390-1394 CSCD被引 37    
13.  Liang J J. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization,2013 CSCD被引 10    
14.  周凌云. 一种邻域重心反向学习的粒子群优化算法. 电子学报,2017,45(11):2815-2824 CSCD被引 21    
15.  孙辉. 混合均值中心反向学习粒子群优化算法. 电子学报,2019,47(9):1809-1818 CSCD被引 13    
16.  孙骞. 基于熵模型的粒子群优化算法. 东南大学学报(自然科学版),2019,49(6):1088-1093 CSCD被引 2    
引证文献 8

1 尹建光 基于自适应协同引导的电池组性能衰退参数辨识 储能科学与技术,2022,11(10):3345-3353
CSCD被引 0 次

2 辛守庭 基于改进粒子群算法的旋翼无人机三维航迹规划 飞行力学,2022,40(5):47-52,73
CSCD被引 2

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号