低温热年代学方法及其在矿床学研究中的应用
Low-temperature Thermochronology and its Applications for Studying Ore Deposits
查看参考文献79篇
文摘
|
低温热年代学方法主要包括裂变径迹法和(U-Th)/He法,二者分别利用矿物中238U裂变产生径迹的积累和矿物中U、 Th衰变产生4He的积累对矿物进行定年。由于低温热年代学方法的封闭温度低且对温度变化敏感,可用于定量确定地壳浅部所经历热事件和侵蚀事件的时间、幅度、速率及空间分布特征。目前低温热年代学方法在矿床学研究中的应用主要包括:间接或直接测定矿床的形成时代、恢复岩浆-热液成矿体系的热演化历史、约束成矿热液活动的持续时间、计算矿床的剥露速率和剥露量、估算矿床的形成深度、评价矿床的保存潜力、定量研究成矿后断层的位移、寻找古地热异常来指导找矿等。本文重点介绍这些应用的原理、方法和实例,并对部分应用的前提条件和注意事项作了说明。此外还指出低温热年代学方法还存在分析误差较大和成本较高等问题,分析技术的革新将进一步促进其在矿床学及其它领域中的应用。 |
其他语种文摘
|
Low-temperature thermochronology mainly includes the fission track and(U-Th)/He dating methods which are based on relationship between the time and accumulated tracks produced by 238U fission and the time and accumulated 4He contents produced by the U and Th decay in some minerals,respectively. Because the low-temperature thermochronology methods are characterized with low closure temperature and are sensitive to the temperature change,they can be used to quantitatively determine the time,amplitude,rate and spatial distribution of thermal events and erosion events occurred in the shallow level of crust. Currently,applications of low-temperature thermochronology in researches of ore deposits include to indirectly or directly determine mineralization age,to reconstruct the thermal evolution history of magmatic-hydrothermal metallogenic system,to constrain the duration of the metallogenic fluid activity,to calculate the exhumation rate and amount of orebodies in the ore deposit,to estimate the formation depth of orebodies in the ore deposit,to evaluate the preservation potential of ore deposit,to quantitatively determine the displacement distance of fault after the mineralization, and to identify paleogeothermal anomalies for guiding the ore prospecting. In this paper,the principles,methods,and examples of these applications have been mainly introduced,the preconditions and precautions for some of these applications have been especially instructed. At present,relatively large errors of analytical data and high analytical costs are still existed problems of the low-temperature thermochronology. The innovation of analytical technology will further promote the application of low-temperature thermochronology in researches of ore deposits and other fields. |
来源
|
矿物岩石地球化学通报
,2021,40(4):958-973 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2021.40.029
|
关键词
|
低温热年代学
;
裂变径迹
;
(U-Th)/He
;
矿床学
;
应用
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
;
国家973计划
|
文献收藏号
|
CSCD:7121473
|
参考文献 共
79
共4页
|
1.
Abdullin F. LA-ICP-MS-based apatite fission track dating of the Todos Santos Formation sandstones from the Sierra de Chiapas(SE Mexico)and its tectonic significance.
International Geology Review,2016,58(1):32-48
|
CSCD被引
2
次
|
|
|
|
2.
Arehart G B. Thermal and isotopic profiling of the Pipeline hydrothermal system: Application to exploration for Carlintype gold deposits.
Journal of Geochemical Exploration,2006,91(1/3):27-40
|
CSCD被引
3
次
|
|
|
|
3.
Blackburn T J. Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks.
Earth and Planetary Science Letters,2007,259(3/4):360-371
|
CSCD被引
11
次
|
|
|
|
4.
Blackburn T J. (UTh)/He dating of kimberlites-A case study from north-eastern Kansas.
Earth and Planetary Science Letters,2008,275(1/2):111-120
|
CSCD被引
7
次
|
|
|
|
5.
Boyce J W. Laser microprobe (U-Th)/He geochronology.
Geochimica et Cosmochimica Acta,2006,70(12):3031-3039
|
CSCD被引
10
次
|
|
|
|
6.
Brandon M T. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains,northwest Washington State.
Geological Society of America Bulletin,1998,110(8):985-1009
|
CSCD被引
42
次
|
|
|
|
7.
Cabral A R. Direct dating of gold by radiogenic helium: Testing the method on gold from Diamantina, Minas Gerais,Brazil.
Geology,2013,41(2):163-166
|
CSCD被引
4
次
|
|
|
|
8.
Carrapa B. Apatite triple dating and white mica ~(40)Ar/39 Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history.
Geology,2009,37(5):407-410
|
CSCD被引
7
次
|
|
|
|
9.
Chakurian A M. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track,~(40)Ar/39 Ar,and apatite (UTh)/He methods.
Economic Geology,2003,98(6):1159-1171
|
CSCD被引
16
次
|
|
|
|
10.
Chew D M. Geochronology and thermochronology using apatite: Time and temperature,lower crust to surface.
Elements,2015,11(3):189-194
|
CSCD被引
24
次
|
|
|
|
11.
Cline J S. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models.
Economic Geology 100th Anniversary Volume,2005:451-484
|
CSCD被引
42
次
|
|
|
|
12.
Cunningham C G. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system,Utah.
Economic Geology,2004,99(4):789-806
|
CSCD被引
7
次
|
|
|
|
13.
Danhara T. A review of the present state of the absolute calibration for zircon fission track geochronometry using the external detector method.
Island Arc,2013,22(3):264-279
|
CSCD被引
1
次
|
|
|
|
14.
Danisik M. Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach.
Chemical Geology,2010,278(1/2):58-69
|
CSCD被引
10
次
|
|
|
|
15.
Danisik M. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals.
Science Advances,2017,3(2):e1601121
|
CSCD被引
2
次
|
|
|
|
16.
Deng J. Geochronology and thermochronometry of the Jiapigou gold belt,northeastern China: New evidence for multiple episodes of mineralization.
Journal of Asian Earth Sciences,2014,89:10-27
|
CSCD被引
19
次
|
|
|
|
17.
Ding R X. Low temperature thermal history reconstruction using apatite fission-track length distribution and apatite U-Th/He age.
arXiv: 1706.03663,2017
|
CSCD被引
1
次
|
|
|
|
18.
Dodson M H. Closure temperature in cooling geochronological and petrological systems.
Contributions to Mineralogy and Petrology,1973,40(3):259-274
|
CSCD被引
149
次
|
|
|
|
19.
Enkelmann E. Advantages and challenges of automated apatite fission track counting.
Chemical Geology,2012,322/323:278-289
|
CSCD被引
3
次
|
|
|
|
20.
Evans N J. Emplacement age and thermal footprint of the diamondiferous ellendale E9 lamproite pipe,Western Australia.
Mineralium Deposita,2013,48(3):413-421
|
CSCD被引
7
次
|
|
|
|
|