固体推进剂3D打印技术研究进展
Research progress of solid propellant 3D printing technology
查看参考文献59篇
文摘
|
固体推进剂是火箭、导弹的重要动力源,其性能提高对提升导弹武器的作战能力具有重要意义。3D打印技术作为一项备受关注的先进制造技术,能够完成传统制造工艺难以达到的高精度、高复杂度的器件制造,解决传统固体推进剂浇注工艺难以解决的混料不均匀、产品一致性差、安全性低等问题,在固体推进剂制造领域具备广阔的前景。目前3D打印制备固体推进剂相关研究开展缓慢的原因主要是面临安全保障和工艺瓶颈两大难题。针对固体推进剂3D打印的安全性问题,将固体推进剂3D打印及其相关工作分成了部分含能组分3D打印、混合推进剂3D打印以及固体推进剂3D打印三个阶段,逐步论证其含能组分的安全可打印性。针对固体推进剂3D打印工艺瓶颈问题主要介绍了3D打印推进剂专用浆料、设备的开发进展。从目前已有的成果和发展趋势来看,未来的固体推进剂3D打印研究应该聚焦在专用配方的开发以及实现打印规模化两个方面。 |
其他语种文摘
|
Solid propellant is an important source of power for rockets and missiles, and its performance improvement is of great significance for improving the combat capability of missile weapons. 3D printing technology as a focus on advanced manufacturing technology, able to complete high-precision, high-complexity device manufacturing that is difficult to achieve by traditional manufacturing processes, solve the problems of uneven mixing, poor product consistency, and low safety, which are difficult to solve by traditional solid propellant pouring process, has broad prospects in the field of solid propellant manufacture.. The slow progress of the research on the preparation of solid propellant by 3D printing is mainly due to the two major problems of safety and process bottleneck. In view of the safety issues of solid propellant 3D printing, solid propellant 3D printing and related work are divided into three stages: 3D printing of partial energetic components, 3D printing of mixed propellants, and 3D printing of solid propellants. The safe printability of energetic components should be demonstrated step by step. In review of the bottleneck problem of solid propellant 3D printing process, the development progress of 3D printing propellant special slurry and equipment is introduced. From the current achievements and development, the future research on solid propellant 3D printing should focus on the development of special formulation and the realization of large-scale printing. |
来源
|
航空材料学报
,2021,41(6):23-32 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000161
|
关键词
|
3D打印
;
含能材料
;
固体推进剂
;
药柱
|
地址
|
1.
上海交通大学材料科学与工程学院, 上海, 200240
2.
上海航天化工应用研究所, 浙江, 湖州, 313000
3.
潍坊学院化学化工与环境工程学院, 山东, 潍坊, 261061
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
航天(宇宙航行) |
基金
|
上海航天技术研究院-上海交大航天先进技术联合研究中心项目
;
上海市自然科学基金
;
山东省自然科学基金
|
文献收藏号
|
CSCD:7111399
|
参考文献 共
59
共3页
|
1.
卢秉恒. 增材制造(3D打印)技术发展.
机械制造与自动化,2013(4):7-10
|
CSCD被引
7
次
|
|
|
|
2.
王延庆. 3D打印材料应用和研究现状.
航空材料学报,2016,36(4):89-98
|
CSCD被引
46
次
|
|
|
|
3.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
114
次
|
|
|
|
4.
Hon K K B. Direct writing technology-advances and developments.
Cirp Annals Manufacturing Technology,2008,57(2):601-620
|
CSCD被引
8
次
|
|
|
|
5.
Wendel B. Additive processing of polymers.
Macromolecular Materials & Engineering,2008,293(10):799-809
|
CSCD被引
8
次
|
|
|
|
6.
Muravyev N V. Progress in additive manufacturing of energetic materials:creating the reactive microstructures with high potential of applications.
Propellants Explosives Pyrotechnics,2019,44:1-30
|
CSCD被引
7
次
|
|
|
|
7.
Wohlers T T.
Wohlers report 2017:additive manufacturing and 3D printing state of the industry: annual worldwide progress report,2017
|
CSCD被引
1
次
|
|
|
|
8.
金大元. 3D打印技术及其在军事领域的应用.
新技术新工艺,2015(4):9-13
|
CSCD被引
2
次
|
|
|
|
9.
周加永. 3D打印技术在军事领域的应用及发展趋势.
机械工程与自动化,2015(6):217-219
|
CSCD被引
1
次
|
|
|
|
10.
王飞跃. 国防装备与系统的未来变革:从3D打印到平行军事体系.
国防科技,2013,34(3):1-9
|
CSCD被引
4
次
|
|
|
|
11.
谭惠民.
固体推进剂化学与技术,2015
|
CSCD被引
40
次
|
|
|
|
12.
张斌. 高能复合固体推进剂的研究进展.
材料导报,2009,23(7):17-20
|
CSCD被引
6
次
|
|
|
|
13.
Beckstead M W. Modeling of combustion and ignition of solid-propellant ingredients.
Progress in Energy & Combustion Science,2007,33(6):497-551
|
CSCD被引
35
次
|
|
|
|
14.
Chaturvedi S. Solid propellants: AP/HTPB composite propellants.
Arabian Journal of Chemistry,2019,12(8):2061-2068
|
CSCD被引
20
次
|
|
|
|
15.
Maggi F. Efficient solid rocket propulsion for access to space.
Acta Astronautica,2010,66(11/12):1563-1573
|
CSCD被引
6
次
|
|
|
|
16.
庞爱民. 固体推进剂技术的创新与发展规律.
含能材料,2015,23(1):3-6
|
CSCD被引
26
次
|
|
|
|
17.
Kline D J. Experimental observation of the heat transfer mechanisms that drive propagation in additively manufactured energetic materials.
Combustion and Flame,2020,215:417-424
|
CSCD被引
1
次
|
|
|
|
18.
Murray A K. Selectively-deposited energetic materials: a feasibility study of the piezoelectric inkjet printing of nanothermites.
Additive Manufacturing,2018,22:69-74
|
CSCD被引
10
次
|
|
|
|
19.
张力恒. 推进剂装药混合过程安全性研究.
固体火箭技术,2012,35(4):508-512
|
CSCD被引
5
次
|
|
|
|
20.
雷宁. 国外固体推进剂装药工艺安全性技术.
飞航导弹,2017,3:90-94
|
CSCD被引
1
次
|
|
|
|
|