基于液晶空间光调制器的光场调控技术及应用进展(特邀)
Progress in Study and Application of Optical Field Modulation Technology Based on Liquid Crystal Spatial Light Modulators(Invited)
查看参考文献191篇
文摘
|
作为电磁波,光场可用振幅、相位和偏振等参量表征,空间光场调控技术通过对这些参量进行调控,生成新颖的空间结构光场。与其它类型调控器件相比,液晶空间光调制器具有衍射效率高、调控单元数目达到百万量级、实时动态调控等优点,已成为空间光场调控的主流器件。介绍了基于液晶空间光调制器的光场调控技术,包括:单参量调控、复振幅调控和多参量联合调控的原理和算法;例举了光场调控技术在全息光镊、光学显微、光信息存储、光学微加工、散射介质后成像、光通信等领域的应用;讨论了该技术面临的问题、发展趋势和发展前景;旨在帮助研究者系统了解基于液晶空间光调制器的光场调控技术的基本知识、最新研究进展和潜在应用,为该领域的科学研究提供参考。 |
其他语种文摘
|
As an electromagnetic wave,optical field can be described by using parameters of amplitude, phase and polarization. Spatial optical field modulation technology enables to generate novel spatially structured optical field by modulating these parameters. Compared with other types of modulation devices, the liquid crystal spatial light modulator has the advantages of high diffraction efficiency,millions of modulated pixels,and real-time dynamic modulation. It has become the mainstream device for spatial optical field modulation. In this paper,we first give an introduction to the principles and algorithms of optical field modulation technology, including single-parameter modulation, complex amplitude modulation,and multi-parameter modulation by using the liquid crystal spatial light modulators. Some applications of these optical modulation technologies in holographic optical tweezers,optical microscopy, optical information storage, optical micromachining, imaging behind scattering media, and optical communication are exampled. Then we discuss the problems to be resolved,the development trends and the development prospects of the technology. The purpose of this paper is to help researchers systematically understand the principle,the latest research progress and the potential application of the optical field modulation technology based on the liquid crystal spatial light modulators,and provide some references for research in this field. |
来源
|
光子学报
,2021,50(11):1123001 【核心库】
|
DOI
|
10.3788/gzxb20215011.1123001
|
关键词
|
液晶空间光调制器
;
光场调控
;
计算全息图
;
傅里叶全息
;
空域光场调控
;
空间频率域光场调控
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安交通大学生命科学与技术学院生物医学光子学与传感研究所, 生物医学信息工程教育部重点实验室, 西安, 710049
4.
安徽师范大学物理与电子信息学院, 安徽, 芜湖, 241002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
国家重点研发计划
;
陕西省重点研发计划
|
文献收藏号
|
CSCD:7111212
|
参考文献 共
191
共10页
|
1.
Rubinsztein-Dunlop H. Roadmap on structured light.
Journal of Optics,2017,19(1):013001
|
CSCD被引
45
次
|
|
|
|
2.
Mcgloin D. Bessel beams:Diffraction in a new light.
Contemporary Physics,2005,46(1):15-28
|
CSCD被引
47
次
|
|
|
|
3.
Gori F. Bessel-Gauss beams.
Optics Communications,1987,64(6):491-495
|
CSCD被引
66
次
|
|
|
|
4.
Siviloglou G A. Observation of accelerating Airy beams.
Physical Review Letters,2007,99(21):213901
|
CSCD被引
216
次
|
|
|
|
5.
Singh B K. Super-Airy beam:self-accelerating beam with intensified main lobe.
Optics Letters,2015,40(20):4703-4706
|
CSCD被引
5
次
|
|
|
|
6.
Efremidis N K. Airy beams and accelerating waves:an overview of recent advances.
Optica,2019,6(5):686-701
|
CSCD被引
39
次
|
|
|
|
7.
Liu Sheng. Highly efficient generation of arbitrary vector beams with tunable polarization, phase,and amplitude.
Photonics Research,2018,6(4):228-233
|
CSCD被引
23
次
|
|
|
|
8.
Garces-Chavez V. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
Nature,2002,419(6903):145-147
|
CSCD被引
90
次
|
|
|
|
9.
Zhou Kangzhu. Spontaneous-focusing and self-healing of Airy-like beams.
Results in Physics,2020,19:103526
|
CSCD被引
1
次
|
|
|
|
10.
Dorn R. Sharper focus for a radially polarized light beam.
Physical Review Letters,2003,91(23):233901
|
CSCD被引
140
次
|
|
|
|
11.
Fu Shenhe. Spin-orbit optical hall effect.
Physical Review Letters,2019,123(24):243904
|
CSCD被引
12
次
|
|
|
|
12.
于湘华. 光片荧光显微成像技术及应用进展.
激光与光电子学进展,2020,57(10):9-23
|
CSCD被引
3
次
|
|
|
|
13.
Kozawa Y. Superresolution imaging via superoscillation focusing of a radially polarized beam.
Optica,2018,5(2):86-92
|
CSCD被引
31
次
|
|
|
|
14.
Maurer C. What spatial light modulators can do for optical microscopy.
Laser & Photonics Reviews,2011,5(1):81-101
|
CSCD被引
33
次
|
|
|
|
15.
Grier D G. A revolution in optical manipulation.
Nature,2003,424(6950):810-816
|
CSCD被引
274
次
|
|
|
|
16.
Woerdemann M. Advanced optical trapping by complex beam shaping.
Laser & Photonics Reviews,2013,7(6):839-854
|
CSCD被引
24
次
|
|
|
|
17.
Liang Yansheng. Simultaneous optical trapping and imaging in the axial plane:a review of current progress.
Reports on Progress in Physics,2020,83(3):032401
|
CSCD被引
12
次
|
|
|
|
18.
Cai Mengqiang. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields.
Optics Letters,2016,41(7):1474-1477
|
CSCD被引
11
次
|
|
|
|
19.
Xian Mingcong. Segmented cylindrical vector beams for massively-encoded optical data storage.
Science Bulletin,2020,65(24):2072-2079
|
CSCD被引
10
次
|
|
|
|
20.
Zhao Yifan. High-base vector beam encoding/decoding for visible-light communications.
Optics Letters,2015,40(21):4843-4846
|
CSCD被引
31
次
|
|
|
|
|