帮助 关于我们

返回检索结果

一种基于角度信息的约束高维多目标进化算法
A Constrained Many-Objective Evolutionary Algorithm Based on Angle Information

查看参考文献30篇

刘冰洁 1   毕晓君 2 *  
文摘 目前约束高维多目标进化算法大多注重提高收敛精度,而收敛速度相对较慢.为提高算法的收敛速度,提出一种基于角度信息的约束高维多目标进化算法.该算法提出基于角度违反度函数的选择操作,依据动态的收敛性和分布性直接选择较优个体,提高收敛速度;此外,提出了基于差分进化算法的交叉操作,在不同的进化阶段选用不可行解参与交叉操作,补偿收敛精度.在标准测试函数集C-DTLZ上进行仿真实验,并与当前国内外性能优异的4种约束高维多目标进化算法进行对比,证明了本文算法收敛精度保持良好,而收敛速度得到了提升,且目标维数越高提升效果越明显.
其他语种文摘 Most of the current constrained many-objective evolutionary algorithms focus on the convergence accuracy, but the convergence speed is relatively slow. In order to improve the convergence speed, a constrained many-objective evolutionary algorithm based on angle information (CMaOEA-AI) is proposed. In the algorithm, a selection operation based on the angle violation function is proposed to improve the convergence speed, which directly selects the superior individuals according to the dynamic convergence and diversity. Thereafter a crossover operation based on the differential evolutionary algorithm is proposed, which can select the infeasible solutions to participate in the crossover operation at different evolutionary stages. Simulation experiments are performed on the standard test function sets C-DTLZ. Compared with four stateof- the-art constrained many-objective evolutionary algorithms, the proposed algorithm shows good convergence accuracy while the convergence speed is greatly improved, and the higher the objective dimension, the better the effect.
来源 电子学报 ,2021,49(11):2208-2216 【核心库】
DOI 10.12263/DZXB.20201044
关键词 约束高维多目标优化 ; 角度违反度 ; 选择操作 ; 差分算法 ; 交叉操作
地址

1. 哈尔滨工程大学信息与通信工程学院, 黑龙江, 哈尔滨, 150001  

2. 中央民族大学信息工程学院, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7109404

参考文献 共 30 共2页

1.  Zhou Y. Tri-goal evolution framework for constrained many-objective optimization. IEEE Transactions on Systems, Man & Cybernetics Systems,2018:1-14 CSCD被引 1    
2.  Li M Q. An angle based constrained many-objective evolutionary algorithm. Applied Intelligence,2017,47:705-720 CSCD被引 3    
3.  顾清华. 求解约束高维多目标问题的分解约束支配NSGA-II优化算法. 控制与决策,2020,35(10):2466-2474 CSCD被引 10    
4.  Miyakawa M. Utilization of infeasible solutions in MOEA/D for solving constrained many-objective optimization problems. Proceedings of the Genetic and Evolutionary Computation Conference Companion,2017:35-36 CSCD被引 2    
5.  Miyakawa M. Directed mating in decomposition-based MOEA for constrained many-objective optimization. Proceedings of the Genetic and Evolutionary Computation Conference Companion,2018:721-728 CSCD被引 1    
6.  李智勇. 约束优化进化算法综述. 软件学报,2017,28(6):1529-1546 CSCD被引 40    
7.  Matias J. Adaptive penalty and barrier function based on fuzzy logic. Expert Systems with Applications,2015,42(19):6777-6783 CSCD被引 3    
8.  Deb K. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197 CSCD被引 3273    
9.  Zhang M. Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences,2008,178(15):3043-3074 CSCD被引 29    
10.  张磊. 基于重新匹配策略的ε 约束多目标分解优化算法. 电子学报,2018,46(5):1032-1040 CSCD被引 10    
11.  Zeng S Y. A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization. IEEE Transactions on Cybernetics,2017,47(9):2678-2268 CSCD被引 2    
12.  Asafuddoula M. A decomposition-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation,2015,19(3):445-460 CSCD被引 29    
13.  Jan M A. MOEA/D for constrained multiobjective optimization: Some preliminary experimental result. 2010 UK Workshop on Computational Intelligence,2010:1-6 CSCD被引 1    
14.  Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation,2014,18(4):602-622 CSCD被引 457    
15.  Deb K. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation,2014,18(4):577-601 CSCD被引 457    
16.  Cai X. A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors. IEEE Transactions on Cybernetics,2018,48(8):2335-2348 CSCD被引 5    
17.  Li K. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation,2015,19(5):694-716 CSCD被引 64    
18.  Li K. Two-archive evolutionary algorithm for constrained multi-objective optimization. IEEE Transactions on Evolutionary Computation,2018,23(2):303-315 CSCD被引 30    
19.  Fan Z. Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems. Swarm and Evolutionary Computation,2020,54:100651 CSCD被引 3    
20.  Martinez S Z. A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. Proceedings of 2014 IEEE Congress on Evolutionary Computation,2014:429-436 CSCD被引 1    
引证文献 3

1 张睿 求解高维昂贵多目标问题的约束型Dropout代理辅助进化算法 电子学报,2023,51(7):1859-1867
CSCD被引 1

2 张睿 面向深度分类模型超参数自优化的代理模型 计算机应用,2024,44(10):3021-3031
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号