可展开空间光学望远镜技术发展及展望
Development and prospects of deployable space optical telescope technology
查看参考文献86篇
文摘
|
为了获得更高的角分辨率,空间光学望远镜的口径越来越大,口径超过4 m的空间望远镜将难以突破现有运载火箭整流罩有效包络的限制。另一方面,在研制周期及成本等方面拥有较大优势的微纳光学遥感卫星也对提高空间分辨率和集光面积有广泛的需求,需要在较小的发射体积里容纳下较大的光机系统,以降低发射成本。可展开空间光学望远镜将成为解决发射尺寸受限的可行方式。从大口径空间天文望远镜、分块式可展开对地观测望远镜和光轴方向可展开微纳卫星光学望远镜等方面对国内外可展开空间光学望远镜的研究现状进行了综述。对可展开空间光学望远镜涉及到的一些关键技术和发展趋势进行了阐述和归纳。 |
其他语种文摘
|
In order to obtain higher angular resolution, the aperture of the space optical telescope is getting larger and larger, and the space telescope with aperture of more than four meters will be difficult to break through the limitation of the effective envelope of the fairing of the existing launch vehicle. On the other hand, the micro-nano optical remote sensing satellite, which has great advantages in terms of development cycle and cost, also has extensive requirements for improving spatial resolution and light gathering area, requiring a smaller launch volume to accommodate a large opto-mechanical system to reduce the launch cost. Deployable space telescopes will be a feasible solution to overcome the limitations of launch size. The research status of deployable space telescopes was reviewed from the aspects of large aperture space astronomical telescopes, segmented mirror deployable telescopes for earth observation and micro-nano satellite optical telescopes deploying along optical axis. Some key technologies and development trends involved in deployable space telescopes were described and summarized. |
来源
|
红外与激光工程
,2021,50(11):20210199 【核心库】
|
DOI
|
10.3788/IRLA20210199
|
关键词
|
可展开机构
;
高分辨率
;
空间光学望远镜
;
大口径
;
分块式主镜
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2276 |
学科
|
机械、仪表工业;自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7105592
|
参考文献 共
86
共5页
|
1.
Lillie C F. Large deployable telescopes for future space observatories.
UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. 5899,2005:58990D
|
CSCD被引
1
次
|
|
|
|
2.
Zhang Xuejun. Applications and development of ultra large aperture space optical remote sensor.
Optics and Precision Engineering. (in Chinese),2016,24(11):2613-2626
|
CSCD被引
4
次
|
|
|
|
3.
Greenhouse M A. The JWST science instrument payload: mission context and status.
UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VI. 8860,2013:886004
|
CSCD被引
1
次
|
|
|
|
4.
Sabelhaus P A. An overview of the James Webb Space Telescope (JWST) project.
Optical, Infrared, and Millimeter Space Telescopes. 5487,2004:550-563
|
CSCD被引
2
次
|
|
|
|
5.
Clampin M. Status of the James Webb space telescope observatory.
Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442,2012:84422A
|
CSCD被引
1
次
|
|
|
|
6.
Reynolds P. Design and development of the primary and secondary mirror deployment systems for the cryogenic JWST.
37th Aerospace Mechanisms Symposium,2004:29-44
|
CSCD被引
1
次
|
|
|
|
7.
Acton D S. Wavefront sensing and controls for the James Webb space telescope.
Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442,2012:84422H
|
CSCD被引
1
次
|
|
|
|
8.
Kimble R A. Completion of the JWST spacecraft/sunshield and telescope/instrument elements.
American Astronomical Society Meeting. 235,2020:372-310
|
CSCD被引
1
次
|
|
|
|
9.
Clampin M. Overview of the James Webb space telescope observatory.
UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V. 8146,2011:814605
|
CSCD被引
1
次
|
|
|
|
10.
Arenberg J. Status of the JWST sunshield and spacecraft.
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. 9904,2016:990405
|
CSCD被引
1
次
|
|
|
|
11.
The LUVOIR Team.
The LUVOIR mission concept study final report,2019
|
CSCD被引
2
次
|
|
|
|
12.
Park S. LUVOIR thermal architecture overview and enabling technologies for picometerscale WFE stability.
2019 IEEE Aerospace Conference,2019:1-13
|
CSCD被引
2
次
|
|
|
|
13.
Hylan J E. The large UV/Optical/lnfrared surveyor (LUVOIR): decadal mission concept study update.
2019 IEEE Aerospace Conference,2019:1-15
|
CSCD被引
2
次
|
|
|
|
14.
Allen M R. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration.
Journal of Astronomical Telescopes, Instruments, and Systems,2016,2(2):029001
|
CSCD被引
2
次
|
|
|
|
15.
Watson J J.
Correcting surface figure error in imaging satellites using a deformable mirror,2013
|
CSCD被引
1
次
|
|
|
|
16.
Mesrine M. High resolution earth observation from geostationary orbit by optical aperture synthesys.
International Conference on Space Optics. 10567,2006:105670B
|
CSCD被引
1
次
|
|
|
|
17.
Aguirre M. ESA activities related to high resolution imaging from GEO.
HR GEO User Consultation Workshop,2010
|
CSCD被引
1
次
|
|
|
|
18.
Bello U D. ESA studies on HR imaging from geostationary satellites.
2nd GEO-HR User Consultation Workshop,2013
|
CSCD被引
1
次
|
|
|
|
19.
Decourt R.
Hoasis: Surveillance a haute resolution depuis l ' orbite geostationnaire,2013
|
CSCD被引
1
次
|
|
|
|
20.
Behar-Lafenetre S.
Active optics in deployable systems for future EO and science missions,2020
|
CSCD被引
1
次
|
|
|
|
|