微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响
Effect of minor boron on mechanical properties of Ti-Fe-Cu-Sn-Nb alloys
查看参考文献36篇
文摘
|
基于细晶强化和第二相强化原理,通过在一种近β钛合金中加入微量硼(B)元素,以强化该合金。首先设计不同含硼量的Ti_(85)Fe_6Cu_5Sn_2Nb_2合金,并用真空非自耗电弧炉制备,随后对合金在800℃下进行多道次热轧及最终淬火。通过组织观察、拉伸力学性能测试、断口观察及透射电子显微分析,考察不同硼含量对Ti_(85)Fe_6Cu_5Sn_2Nb_2合金组织及力学性能的影响。结果表明,微量硼元素可以使合金的晶粒细化,强度明显提高,但伴随着塑性下降。添加质量分数为0.15%硼可以使合金具有较好的综合力学性能(σ_(0.2)=1105MPa,δ_b=4.5%)。随着硼含量的增加,合金的强度升高,最高可达1156MPa。硼的加入在合金中形成正交结构的TiB相,分布于β钛基体中。变形过程中,TiB断裂、TiB割裂基体及其与基体脱粘,产生裂纹源,导致合金塑性下降。 |
其他语种文摘
|
Based on grain refinement and secondary phase strengthening,minor boron(B)was added to nearβ-Ti alloy to strengthen the alloys.Ti_(85)Fe_6Cu_5Sn_2Nb_2 alloys with various B contents were designed,prepared by using a non-consumable vacuum arc melting furnace,and hot rolled at 800℃ followed by quenching.The effects of minor B addition on the microstructure and mechanical properties of Ti_(85)Fe_6Cu_5Sn_2Nb_2alloy were investigated through microstructure observation,tensile mechanical test,fracture observation and transmit electron microscopy.The results reveal that minor B addition can refine the grains,improve the strength whereas the plasticity of the alloy is decreased. The alloy containing 0.15% (mass fraction)B possesses the better comprehensive mechanical properties (σ_(0.2)=1105MPa,δ_b=4.5%).With the increase of B content,the strength of the alloy is increased and reaches up to 1156MPa.Orthorhombic TiB compounds are formed in the alloy,distributed in the β-Tialloy matrix.Upon deformation,the fracture of TiB phases,cutting and debonding of TiB phases to the alloy matrix,formed the fracture source,resulted in the decrease of the alloy plasticity. |
来源
|
材料工程
,2021,49(11):156-162 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2019.001222
|
关键词
|
钛合金
;
TiB
;
力学性能
;
显微组织
|
地址
|
1.
燕山大学, 亚稳材料制备技术与科学国家重点实验室, 河北, 秦皇岛, 066004
2.
济宁学院物理与信息工程系, 山东, 曲阜, 273155
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
河北省研究生创新资助项目
|
文献收藏号
|
CSCD:7090769
|
参考文献 共
36
共2页
|
1.
Cao G H. Sn and Nb modified ultrafine Ti-based bulk alloys with high-strength and enhanced ductility.
Applied Physics Letters,2013,102(6):061908
|
CSCD被引
2
次
|
|
|
|
2.
Chanbi D. Microstructural and mechanical properties of binary Ti-rich Fe-Ti,Alrich Fe-Al,and Ti-Al alloys.
Materials(Basel),2019,12(3):433
|
CSCD被引
2
次
|
|
|
|
3.
Choi Y. Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys.
The Physics of Met-als and Metallography,2014,115(13):1307-1312
|
CSCD被引
1
次
|
|
|
|
4.
Chu Q. Nanoindentation investigation of Ti/Fe bimetallic plate welded by vanadium filler.
Metallurgical and Materials Transactions A,2019,50(5):2302-2309
|
CSCD被引
1
次
|
|
|
|
5.
Dal B M R. The effect of Zr and Sn additions on the microstructure of Ti-Nb-Fe gum metals with high elastic admissible strain.
Materials & Design,2018,160:1186-1195
|
CSCD被引
5
次
|
|
|
|
6.
Ehtemam-Haghighi S. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition.
Materials & Design,2016,97:279-286
|
CSCD被引
4
次
|
|
|
|
7.
Ehtemam-Haghighi S. Influence of Nb on theβ→α″martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys.
Materials Science and Engineering:C,2016,60:503-510
|
CSCD被引
6
次
|
|
|
|
8.
Fowler L. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test.
Materials Science and Engineering:C,2019,97:707-714
|
CSCD被引
6
次
|
|
|
|
9.
Gao A. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts.
Biomaterials,2014,35(13):4223-4235
|
CSCD被引
19
次
|
|
|
|
10.
Haghighi S E. Effect ofα″martensite on the microstructure and mechanical properties of betatype Ti-Fe-Ta alloys.
Materials &Design,2015,76:47-54
|
CSCD被引
13
次
|
|
|
|
11.
Zhao G H. Ti-Fe-Sn-Nb hypoeutectic alloys with superb yield strength and significant strainhardening.
Scripta Materialia,2017,135:59-62
|
CSCD被引
1
次
|
|
|
|
12.
Louzguine-Luzgin D V. Structure and properties of high strength and ductile Ti-Fe-Cu-Nb-Sn alloys.
Materials Science and Engineering: A,2008,497(1/2):126-131
|
CSCD被引
2
次
|
|
|
|
13.
Zhao G H. New beta-type Ti-Fe-Sn-Nb alloys with superior mechanical strength.
Materials Science and Engineering:A,2017,705:348-351
|
CSCD被引
2
次
|
|
|
|
14.
Chandravanshi V K. Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100.
Journal of Alloys and Compounds,2011,509(18):5506-5514
|
CSCD被引
12
次
|
|
|
|
15.
Louzguina-Luzgina L V. Effect of B addition to hypereutectic Ti-based alloys.
Journal of Alloys and Compounds,2009,474(1/2):131-133
|
CSCD被引
1
次
|
|
|
|
16.
Shimagami K. Effects of Zr and Si addition on high-temperature mechanical properties and microstructure in Ti-10Al-2Nb-based alloys.
Materials Science and Engineering:A,2019,756:46-53
|
CSCD被引
4
次
|
|
|
|
17.
Zadorozhnyy V Y. Tensile properties of a dual-axial forged Ti-Fe-Cu alloy containing boron.
Materials Science and Engineering:A,2014,614:238-242
|
CSCD被引
1
次
|
|
|
|
18.
孟瑶. 硼对Ti-1023合金组织与性能的影响.
钛工业进展,2016,33(4):26-30
|
CSCD被引
2
次
|
|
|
|
19.
张飞奇. 微量硼元素添加对Ti6Al4V-xB组织及性能的影响.
稀有金属材料与工程,2018,47(3):932-936
|
CSCD被引
2
次
|
|
|
|
20.
黄立国. 硼对钛合金成形能力和力学性能影响的研究进展.
机械工程材料,2016,40(6):8-13
|
CSCD被引
3
次
|
|
|
|
|