一种基于OAM的FSO误码性能的理论分析方法
A Theoretical Analysis Method of OAM-Based FSO Error Performance
查看参考文献21篇
文摘
|
携带轨道角动量的涡旋光束在自由空间光通信信道中传输时,信道中的湍流介质会改变涡旋光束的传播特性,破坏波前螺旋结构,最终直接影响通信的稳定性和可靠性.针对现有实验研究在普适性方面的不足,本文选取基于相干光束合成技术的高功率涡旋光束阵列为研究光源,从理论角度出发,建立一套完备的体系架构,用以分析大气湍流引起的幅度和相位起伏对基于轨道角动量的自由空间光通信系统性能的影响.应用光学外差检测,对湍流条件下信噪比的随机分布进行详细的研究,并基于此得到多进制相移键控调制下符号错误概率的解析表达式,评估不同湍流信道参数、光源参数以及接收机参数对符号错误概率的影响.结果表明,增大阵列子光束束腰半径、阵列子光束个数,减小阵列环状半径,可以提高光束质量,优化系统性能.另外,较小的拓扑荷数、传播距离和湍流强度以及较大的接收孔径直径使得符号错误概率较低,对应的通信性能更佳. |
其他语种文摘
|
When the vortex beam carrying orbital angular momentum (OAM) is transmitted in the free space optical communication (FSO) channel, the turbulent medium in which will change the propagation characteristics of the vortex beam, destroy the spiral structure of the wave-front, and ultimately directly affect the stability and reliability of communication. To make up the shortcomings of the previously experimental research in the generalization, a high-power vortex beam array based on coherent beam combining (CBC) technology is selected as the research light source, and a complete system architecture is established from a theoretical point of view to analyze the impact of the amplitude and phase fluctuations caused by atmospheric turbulence on the performance of OAM based FSO communication systems. Applying the optical heterodyne detection (OHD), the random distribution of signal-to-noise ratio (SNR) under turbulent conditions is studied in detail. Based on this, the analytical expression of symbol error probability (SEP) under the condition of Mary Phase-Shift Keying (MPSK) has been derived, and the influence of different turbulence channel parameters, beam parameters and receiver parameters on SEP has been investigated. The results suggest that increasing the beam waist radius of the array subbeams and the number of the array sub-beams, and reducing the ring radius of the array can improve the beam quality and optimize the system performance. In addition, the smaller topological charge, propagation distance and turbulence intensity, and larger receiver aperture diameter can make the symbol error probability lower and the corresponding communication performance better. |
来源
|
电子学报
,2021,49(10):1934-1944 【核心库】
|
DOI
|
10.12263/DZXB.20210261
|
关键词
|
轨道角动量
;
自由空间光通信
;
相干光束合成
;
光学外差检测
;
符号错误概率
|
地址
|
西安电子科技大学通信工程学院, 陕西, 西安, 710071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:7090174
|
参考文献 共
21
共2页
|
1.
孙学宏. 轨道角动量在无线通信中的研究新进展综述.
电子学报,2015,43(11):2305-2314
|
CSCD被引
14
次
|
|
|
|
2.
Andrews L C.
Laser beam propagation through random media. Second Edition,2005:30-171
|
CSCD被引
1
次
|
|
|
|
3.
赵强. 对流层散射传输损耗与大气折射率结构常数相关性研究.
电子学报,2020,48(3):518-523
|
CSCD被引
5
次
|
|
|
|
4.
陈纯毅. 大气信道部分相干光通信链路性能分析与优化.
电子学报,2009,37(8):1869-1872
|
CSCD被引
7
次
|
|
|
|
5.
Li L. Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization.
Optics Letters,2019,44(21):5181-5184
|
CSCD被引
3
次
|
|
|
|
6.
Li L. Increasing system tolerance to turbulence in a 100-Gbit/s QPSK free-space optical link using both mode and space diversity.
Optics Communications,2021,480:126488
|
CSCD被引
3
次
|
|
|
|
7.
Amhoud E M. OFDM with Index Modulation in Orbital Angular Momentum Multiplexed Free Space Optical Links.
Proceedings of the 93rd Vehicular Technology Conference (VTC2021-Spring),2021:1-5
|
CSCD被引
1
次
|
|
|
|
8.
Wang A. Experimental demonstration of OAM-based transmitter mode diversity data transmission under atmosphere turbulence.
Optics Express,2021,29(9):13171-13182
|
CSCD被引
2
次
|
|
|
|
9.
Wang L G. Formation of optical vortices using coherent laser beam arrays.
Optics Communications,2009,282(6):1088-1094
|
CSCD被引
9
次
|
|
|
|
10.
Wang L G. The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays.
Journal of Optics A: Pure and Applied Optics,2009,11(6):065703
|
CSCD被引
6
次
|
|
|
|
11.
Peng Y. Spiral spectrum analysis and application of coherent synthetic vortex beams.
Acta Physica Sinica,2019,68(21):214206
|
CSCD被引
1
次
|
|
|
|
12.
Zhou G. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere.
Optics Express,2008,16(26):21315-21320
|
CSCD被引
2
次
|
|
|
|
13.
Yue P. Propagation of the Bessel-Gaussian Beams Generated by Coherent Beam Combining in Oceanic Turbulence.
Journal of Communications and Information Networks,2019,4(3):25-37
|
CSCD被引
1
次
|
|
|
|
14.
Chu X X. Generating a Bessel-Gaussian beam for the application in optical engineering.
Scientific Reports,2015,5(5):18665
|
CSCD被引
3
次
|
|
|
|
15.
Aksenov V P. Generation of vortex and partially coherent laser beams based on fiber array coherent combining.
Proceedings of the SPIE. 10787,2018:107870M
|
CSCD被引
1
次
|
|
|
|
16.
Aniceto B. Performance of synchronous optical receivers using atmospheric compensation techniques.
Optics Express,2008,16(18):14151-14162
|
CSCD被引
9
次
|
|
|
|
17.
Goodman J W.
Speckle Phenomena in Optics: Theory and Applications,2007:14-42
|
CSCD被引
2
次
|
|
|
|
18.
Leader J C. Atmospheric propagation of partially coherent radiation.
Journal of the Optical Society of America,1978,68(2):175-185
|
CSCD被引
23
次
|
|
|
|
19.
Strohbehn J W. On the probability distribution of line-of-sight fluctuations of optical signals.
Radio Science,1975,10(1):59-70
|
CSCD被引
1
次
|
|
|
|
20.
Gradysteyn I.
Table of Integrals, Series, and Products. Seventh Edition. Rensselaer Polytechnic Institute,2014:16-185
|
CSCD被引
1
次
|
|
|
|
|