光场相机结构参数及装配误差标定方法
Calibration Method for Structural Parameters and Assembly Error of Light Field Camera
查看参考文献20篇
文摘
|
在光场相机的各种应用中,光场的解码和重构都是必不可少的环节。光场相机的结构参数和装配误差的标定对于光场的解码和重构精度至关重要。鉴于此,提出基于光学检测原理的光场相机标定方法,标定过程分为有主镜标定和无主镜标定两部分。结构参数的标定是在有主镜情形下完成的,利用微透镜对主镜出瞳成像的关系构建结构参数标定模型,标定过程中采用均匀光照明主镜光瞳来获得标定图像。装配误差的标定是在无主镜情形下完成的,利用微透镜对无穷远物点的成像特性构建装配误差标定模型,标定过程中采用准直光直接照射微透镜阵列来获得标定图像。采用所提方法对自装配的光场相机进行标定实验,实验结果验证标定模型的正确性和标定方法的可行性。 |
其他语种文摘
|
Objective A light field camera that is capable of capturing four-dimensional light field information through a single shot can be realized by inserting a microlens array in front of the sensor of a traditional camera.It has great potential to play important roles in many applications such as 3Dmeasurement,flow field velocimetry,and wavefront sensing.To obtain the image information,the captured light-field information shall be decoded.The decoding process is largely based on the structural parameters of the light field camera,including the distance between the microlens array and sensor and the pitch of the microlens array.Because of the errors introduced during the manufacturing and assembling processes,using the nominal values of these parameters are not recommended;calibration of the true values and assembly errors are desired.Several studies have been conducted on the calibration of light field cameras.However, most of these studies follow the framework of the calibration method used for traditional cameras,where a complicated imaging model is built and the unknown parameters are searched using an optimization algorithm.The complexity of procedures in such methods makes them difficult to implement.Based on optical test principles,a new calibration method using simpler calibration models is proposed,which enables fast calibration. Methods The proposed calibration method comprises two parts:calibration with the main lens and calibration without the main lens.The calibrations of structural parameters are accomplished when the main lens is mounted,and the calibration model is based on the relation that the exit pupil of the main lens is imaged by the microlens.A uniform light source is used to illuminate the pupil of the main lens to obtain calibration images.The distance between the microlens array and sensor and the pitch of the microlens array are treated as two optimized variables of an optimization model and are calculated by searching the optimal values.The calibration of assembly errors is accomplished when the main lens is removed,and the calibration model is based on the imaging feature of the microlens for object points at infinity. A collimated beam is used to illuminate the microlens array to obtain calibration images.Rotation and tilt errors are obtained by analyzing the geometry of the spot array in calibration images. Results and Discussions A self-constructed light field camera is calibrated using the proposed method.The distance between the microlens array and sensor,for which the nominal value is 2.1300mm,is calibrated to be 2.2738mm. The pitch of the microlens array,for which the nominal value is 0.3000 mm,is calibrated to be 0.3001mm. Furthermore,the distance between the microlens array and exit pupil of the main lens is calculated to be 47.7058mm (Table 1).The rotation error between the microlens array and sensor is calibrated to be 0.1785°,which shall be corrected according to formula(2),and the pitch of microlens array is calculated to be 0.3001mm by extracting the distance between adjacent spot centroids on the calibration image.The tilt error between the microlens array and sensor is 0.0083°and 0.0047°along the row and column directions of the sensor,respectively,and the distance between the microlens array and sensor is calculated to be 2.2719mm based on equation(11).The relative deviation of the calibration values of the distance between the microlens array and sensor obtained from the two different methods is 0.84%.Based on the calibration data,reconstruction of the light field is executed and the rotation error is corrected.Compared with the reconstructed images before calibration,the quality of reconstructed images after calibration improved(Fig.10). |
来源
|
中国激光
,2021,48(20):2004001 【核心库】
|
DOI
|
10.3788/CJL202148.2004001
|
关键词
|
测量
;
计算成像
;
光场相机
;
结构参数
;
装配误差
;
标定
;
光学检测
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7090148
|
参考文献 共
20
共1页
|
1.
Ren N.
Digital light field photography,2006
|
CSCD被引
2
次
|
|
|
|
2.
孙福盛. 基于微透镜阵列型光场相机的多目标快速测距方法.
光学学报,2019,39(8):0815001
|
CSCD被引
7
次
|
|
|
|
3.
石肖. 基于光场相机的全视差三维显示.
光学学报,2020,40(7):0711005
|
CSCD被引
9
次
|
|
|
|
4.
伍俊龙. 基于深度学习的光场成像三维测量方法研究.
中国激光,2020,47(12):1204005
|
CSCD被引
11
次
|
|
|
|
5.
刘慧芳. 基于光场成像的三维粒子追踪测速技术.
光学学报,2020,40(1):0111014
|
CSCD被引
9
次
|
|
|
|
6.
何宇龙. 动态调制型光场相机波前传感器的数值仿真.
光学学报,2019,39(7):0728008
|
CSCD被引
3
次
|
|
|
|
7.
Li S N. Influence of microlens array manufacturing errors on light-field imaging.
Optics Communications,2018,410:40-52
|
CSCD被引
2
次
|
|
|
|
8.
Zhang Z. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334
|
CSCD被引
1752
次
|
|
|
|
9.
Dansereau D G. Decoding, calibration and rectification for lenselet-based plenoptic cameras.
2013 IEEE Conference on Computer Vision and Pattern Recognition,June 23-28,2013,Portland,OR,USA,2013:1027-1034
|
CSCD被引
2
次
|
|
|
|
10.
张旭. 微透镜阵列式光场成像模型及其标定方法.
光学学报,2014,34(12):1211005
|
CSCD被引
9
次
|
|
|
|
11.
张春萍. 光场相机成像模型及参数标定方法综述.
中国激光,2016,43(6):0609004
|
CSCD被引
13
次
|
|
|
|
12.
Sun J. A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature.
Optics Communications,2017,390:7-15
|
CSCD被引
13
次
|
|
|
|
13.
Li C. Metric three-dimensional reconstruction model from a light field and its calibration.
Optical Engineering,2017,56(1):013105
|
CSCD被引
1
次
|
|
|
|
14.
孙俊阳. 一种基于光场图像的聚焦光场相机标定方法.
光学学报,2017,37(5):0515002
|
CSCD被引
7
次
|
|
|
|
15.
刘青松. 用于聚焦型光场相机标定的棋盘角点检测算法.
光学学报,2020,40(14):1415002
|
CSCD被引
9
次
|
|
|
|
16.
Zhang C P. Decoding and calibration method on focused plenoptic camera.
Computational Visual Media,2016,2(1):57-69
|
CSCD被引
1
次
|
|
|
|
17.
Su L J. Calibrating the orientation between a microlens array and a sensor based on projective geometry.
Optics and Lasers in Engineering,2016,82:22-27
|
CSCD被引
2
次
|
|
|
|
18.
Liu Q S. Stepwise calibration of plenoptic cameras based on corner features of raw images.
Applied Optics,2020,59(14):4209-4219
|
CSCD被引
4
次
|
|
|
|
19.
Liu Y X. Accurate calibration of standard plenoptic cameras using corner features from raw images.
Optics Express,2021,29(1):158-169
|
CSCD被引
4
次
|
|
|
|
20.
袁艳. 光场相机中微透镜阵列与探测器配准误差分析.
光子学报,2010,39(1):123-126
|
CSCD被引
10
次
|
|
|
|
|