沟槽微结构尺寸对高速列车横风特性影响研究
Influence of groove microstructures on the aerodynamic performance of high speed trains under crosswind
查看参考文献25篇
文摘
|
随着列车运行速度的不断提升,气动效应对列车运行安全性产生的影响越来越突出。目前针对高速列车横风效应的研究通常假定列车表面光滑,实际上列车表面是非光滑的,边界层内的流动特性有所不同。利用微结构进行非光滑表面设计的新型技术手段可能改善高速列车在横风条件下的气动性能。以在车顶加设矩形条带组的方式,对1∶25比例的列车模型进行局部非光滑设计;采用改进的延迟分离涡模拟(IDDES)方法对横风作用下光滑表面和粗糙表面的列车模型进行气动性能模拟。结果表明,与光滑模型相比,粗糙模型下的侧向力系数和倾覆力矩系数分别降低了3.71 %和10.56 %。选取条带的宽度、高度和长度为设计变量,基于正交试验设计方法设计不同的数值模拟方案,利用方差分析和极差的方法探索矩形条带几何参数与列车侧向力和倾覆力矩间的关系,给出条带外形设计的优选方案。本研究可为横风作用下如何提升高速列车的气动性能提供理论依据。 |
其他语种文摘
|
With the continuous improvement of train speeds, the influence of aerodynamics on the train safety is increasingly prominent. Especially, the crosswind will significantly deteriorate the aerodynamic performance of high-speed trains and bring greater security risks consequently. Present research regarding the crosswind effect on high-speed trains usually assumes that the train surface is smooth, which is, however, not true. Non-smooth surfaces with microstructures will change the flow characteristics in the boundary layer and may improve the aerodynamic performance of high-speed trains. The present study uses an improved delayed detached eddy simulation (IDDES) method was used to obtain the aerodynamic performance of 1∶25 scale train models with smooth and rough surfaces under crosswind. The non-smooth surface is achieved by adding a group of rectangular strips on the top of the train model. The results show that the side force coefficient and the roll moment coefficient can be respectively reduced by 3.71% and 10.56% by using a non-smooth surface. The width, height, and length of the strip are selected as design variables, and different numerical simulation schemes are designed based on the orthogonal experimental design method. The relationship between the geometric parameters of rectangular strip and the side force coefficient and roll moment coefficient of the train is explored by the variance and range analyses, and the optimized strip shape is given. This study can hopefully provide a theoretical basis for the improvement of aerodynamic performance of high-speed trains under crosswind. |
来源
|
空气动力学学报
,2021,39(5):132-141 【核心库】
|
DOI
|
10.7638/kqdlxxb-2021.0149
|
关键词
|
高速列车
;
横风
;
表面微结构
;
气动性能
;
正交设计
;
方差分析
;
极差分析
|
地址
|
1.
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100084
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-1825 |
学科
|
铁路运输 |
文献收藏号
|
CSCD:7090115
|
参考文献 共
25
共2页
|
1.
Luo X W. Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier-Stokes model.
Modern Physics Letters B,2016,30(1):1550262
|
CSCD被引
4
次
|
|
|
|
2.
Luo X W. Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow.
Renewable Energy,2020,153:1042-1052
|
CSCD被引
15
次
|
|
|
|
3.
Zhao X L. A new method for numerical simulation of two trains passing by each other at the same speed.
Journal of Hydrodynamics, Ser B,2010,22(5):697-702
|
CSCD被引
6
次
|
|
|
|
4.
Diedrichs B. Aerodynamic calculations of crosswind stability of a high-speed train using control volumes of arbitrary polyhedral shape.
BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications,2008:20-24
|
CSCD被引
1
次
|
|
|
|
5.
Morden J A. Comparison of RANS and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train.
Journal of Fluids Engineering,2015,137(4):041108
|
CSCD被引
10
次
|
|
|
|
6.
刘荣. 侧风下高速列车临界倾覆风速研究.
铁道科学与工程学报,2019,16(11):2643-2650
|
CSCD被引
4
次
|
|
|
|
7.
公衍军. 横风环境高架运行的城际动车组车体气动载荷分析.
铁道科学与工程学报,2020,17(11):2748-2755
|
CSCD被引
6
次
|
|
|
|
8.
汪久根. 仿生菱形表面织构对高速列车摩擦噪声的影响.
交通运输工程学报,2014,14(1):43-48
|
CSCD被引
12
次
|
|
|
|
9.
汪久根. Koch雪花表面织构设计与高铁空气摩擦噪声分析.
机械工程学报,2014,50(7):78-83
|
CSCD被引
18
次
|
|
|
|
10.
苗秀娟. 车窗对车辆侧向气动性能影响的数值模拟.
中南大学学报(自然科学版),2012,43(9):3698-3703
|
CSCD被引
2
次
|
|
|
|
11.
孙朋朋.
高速列车非光滑车身气动减阻特性研究,2012
|
CSCD被引
7
次
|
|
|
|
12.
朱海燕. 基于边界层控制的高速列车减阻技术.
交通运输工程学报,2017,17(2):64-72
|
CSCD被引
9
次
|
|
|
|
13.
唐焜. 高速列车微结构表面减阻仿真研究.
机械设计与制造,2020(9):213-216
|
CSCD被引
3
次
|
|
|
|
14.
Browand F.
The aerodynamics of heavy vehicles II: trucks, buses, and trains,2009
|
CSCD被引
2
次
|
|
|
|
15.
范泽兵. 航空发动机高空模拟试车台架参数化设计研究.
燃气涡轮试验与研究,2018,31(3):53-57
|
CSCD被引
1
次
|
|
|
|
16.
程效锐. 基于正交设计法的潜水泵空间导叶水力优化.
兰州理工大学学报,2020,46(5):61-67
|
CSCD被引
3
次
|
|
|
|
17.
Spalart P R. A new version of detachededdy simulation, resistant to ambiguous grid densities.
Theoretical and Computational Fluid Dynamics,2006,20(3):181-195
|
CSCD被引
201
次
|
|
|
|
18.
Shur M L. A hybrid RANSLES approach with delayed-DES and wall-modeled LES capabilities.
International Journal of Heat and Fluid Flow,2008,29(6):1638-1649
|
CSCD被引
166
次
|
|
|
|
19.
Munoz-Paniagua J. Evaluation of RANS, SAS and IDDES models for the simulation of the flow around a high-speed train subjected to crosswind.
Journal of Wind Engineering and Industrial Aerodynamics,2017,171:50-66
|
CSCD被引
6
次
|
|
|
|
20.
Li T. Comparisons of shear stress transport and detached eddy simulations of the flow around trains.
Journal of Fluids Engineering,2018,140(11):111108
|
CSCD被引
15
次
|
|
|
|
|