基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究
Consecutive Monitoring of the Poyang Lake Wetland by Integrating Sentinel-2 with Sentinel-1 and Landsat 8 Data
查看参考文献56篇
文摘
|
湿地具有季节性特征,高时间分辨率遥感监测能够更为客观精准地认识其时空变化规律。选择季节性变化显著、我国第一大淡水湖生态湿地--鄱阳湖湿地为典型案例,利用Sentinel-1,2和Landsat 8卫星的2017~2019年所有可以获取的不同时相影像,采用随机森林分类(Random Forest,RF)方法,对研究区的湿地进行遥感分类和信息提取,发挥海量遥感影像在湿地宏观连续监测的优势,解析鄱阳湖湿地的年际、年内时空动态变化特征。研究结果表明:Sentinel-2影像为鄱阳湖湿地动态变化监测提供良好的数据基础,随机森林分类总体分类精度高于90%,提取效果具有比较优势。对3 a分类结果进行统计分析,各湿地类型在年内均呈现出动态变化的特点,在每年2月泥滩和草洲面积到达年内最大,水体面积为年内最小;每年6、7月份水域面积达到年内最大,泥滩和草洲面积最小,季节性变化明显;月度时间序列的分类结果,能更准确地说明湿地类型的月度和季度变化。因此,结合Seninel-1,2以及Landsat 8数据,基于RF算法,能及时、有效地对鄱阳湖等季节性变化强烈的湿地进行动态监测,对开展湿地资源高效调查工作具有重要意义。 |
其他语种文摘
|
Wetlands are usually featured by evident seasonality,and thus high temporal-resolution remote sensing monitoring of their consecutive changes would greatly benefit to more objectively and accurately detecting the characteristics of spatial-temporal changes.The Poyang Lake wetland,as the largest freshwater lake in China,which shows significant intra-annual variability,was selected as the demonstrative case in this study.By collecting all available remote sensing images of Sentinel-1 & 2 and Landsat-8 from 2017 to 2019 based on the Google Earth Engine platform,we adopted the Random Forest(RF)method to map various types of wetlands of the Poyang Lake.It aims to demonstrate the capacity of Sentinel-2 optical images integrated with Sentinel-1 SAR and Landsat-8 data applicable to monitor wetland variations at both the inter-annual and intra-annual timescales.Results show that the Sentinel-2 images enable to provide a powerful data base for monitoring the dynamics of Poyang Lake wetland,and the overall classification accuracy was higher than 90%.the areas of the classification results were statistically analyzed in the 3 years,in February of each year,mudflat and vegetation reach the maximum area,while water area is the minimum.In June and July of each year,the water area reaches the largest in the year,while the mudflat and vegetation area is the smallest.All types of wetlands in the Poyang Lake show evidently seasonal changes,and the monthly classification results can more accurately illustrate the intra-annual changes characteristics of various types.Overall,the integration of Seninel-2 data with Sentinel 1 and Landsat-8 images,can effectively monitor the wetland changes at fine timescale,which is crucial for timely and costly management of wetland resources. |
来源
|
遥感技术与应用
,2021,36(4):760-776 【核心库】
|
DOI
|
10.11873/j.issn.1004-0323.2021.4.0760
|
关键词
|
Sentinel
;
Landsat
;
遥感监测
;
随机森林分类
;
时间序列
;
鄱阳湖湿地
|
地址
|
1.
河南理工大学测绘与国土信息工程学院, 河南, 焦作, 454000
2.
中国科学院南京地理与湖泊研究所, 中国科学院流域地理学重点实验室, 江苏, 南京, 210008
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-0323 |
学科
|
测绘学 |
基金
|
国家重点研发计划
;
国家"人才引进项目"青年项目
;
中国科学院战略性先导科技专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:7088196
|
参考文献 共
56
共3页
|
1.
Charman D J. Carbon dynamics in a forested peatland in north-eastern Ontario,Canada.
Journal of Ecology,1994,82(1):55-62
|
CSCD被引
4
次
|
|
|
|
2.
杨永兴. 国际湿地科学研究进展和中国湿地科学研究优先领域与展望.
地球科学进展,2002,17(4):508-514
|
CSCD被引
82
次
|
|
|
|
3.
谭志强. 长江中游大型通江湖泊湿地景观格局演变特征.
长江流域资源与环境,2017,26(10):1619-1629
|
CSCD被引
13
次
|
|
|
|
4.
Houlahan J E. The effects of adjacent land use on wetland amphibian species richness and community composition.
Canadian Journal of Fisheries and Aquatic Sciences,2003,60(9):1078-1094
|
CSCD被引
5
次
|
|
|
|
5.
刘红玉. 中国湿地资源特征、现状与生态安全.
资源科学,2005,26(3):54-60
|
CSCD被引
24
次
|
|
|
|
6.
Takeuchi W. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV.
Remote Sensing of Environment,2003,85(1):21-29
|
CSCD被引
11
次
|
|
|
|
7.
Vinliam B. 3S技术在霍林河流域下游湿地景观演变中的应用.
吉林大学学报(地球科学版),2005,35(2):221-225
|
CSCD被引
3
次
|
|
|
|
8.
Shanmugam P. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India.
Ecological Modelling,2006,194(4):379-394
|
CSCD被引
20
次
|
|
|
|
9.
Toyra J. Towards operational monitoring of a northern wetland using geomatics based techniques.
Remote Sensing of Environment,2005,97(2):174-191
|
CSCD被引
18
次
|
|
|
|
10.
李建平. 湿地遥感监测研究现状与展望.
地理科学进展,2007,26(1):33-43
|
CSCD被引
42
次
|
|
|
|
11.
鄢帮有. 新中国60年来鄱阳湖的生态环境变迁与生态经济区可持续发展探析.
鄱阳湖学刊,2009(2):5-14
|
CSCD被引
3
次
|
|
|
|
12.
黄群. 洞庭湖湿地景观格局变化以及三峡工程蓄水对其影响.
长江流域资源与环境,2013,22(7):922-927
|
CSCD被引
15
次
|
|
|
|
13.
Zhao B. Monitoring rapid vegetation succession in estuarine wetland using time series MODISbased indicators:An application in the Yangtze River Delta area.
Ecological Indicators,2009,9(2):346-356
|
CSCD被引
25
次
|
|
|
|
14.
张猛. 面向对象方法的时间序列MODIS数据湿地信息提取——以洞庭湖流域为例.
遥感学报,2017,21(3):479-492
|
CSCD被引
38
次
|
|
|
|
15.
Berberoglu S. Mapping and monitoring of coastal wetlands of Cukurova Delta in the Eastern Mediterranean region.
Biodiversity & Conservation,2004,13(3):615-633
|
CSCD被引
8
次
|
|
|
|
16.
Murray N J. Tracking the rapid loss of tidal wetlands in the Yellow Sea.
Frontiers in Ecology and the Environment,2014,12(5):267-272
|
CSCD被引
34
次
|
|
|
|
17.
周振超. 红树林遥感动态监测研究进展.
地球信息科学学报,2018,20(11):1631-1643
|
CSCD被引
21
次
|
|
|
|
18.
刘怡媛.
基于Sentinel-2的老挝北部刀耕火种农业遥感监测及其特征研究,2020
|
CSCD被引
1
次
|
|
|
|
19.
郭交. 基于Sentinel-1和Sentinel-2数据融合的农作物分类.
农业机械学报,2018,49(4):192-198
|
CSCD被引
37
次
|
|
|
|
20.
黎夏. 珠江口红树林湿地演变的遥感分析.
地理学报,2006,61(1):26-34
|
CSCD被引
52
次
|
|
|
|
|