含能材料晶形预测方法:附着能模型及其发展
Crystal Morphology Prediction Method of Energetic Materials:Attachment Energy Model and Its Development
查看参考文献82篇
文摘
|
为促进附着能模型的合理使用及含能材料晶形预测方法更好地发展,综述了国内外近十年来附着能模型在含能材料晶形预测中的应用,对比了相同体系下部分晶形的预测结果,详细阐述了附着能在真空中和溶剂中的计算方法以及计算模型的构建,重点讨论了分子力场、模型尺寸、晶面-溶剂相互作用等因素对附着能计算结果的影响,并介绍了附着能模型的最新进展,包括溶剂效应的校正、过饱和度的探索、晶形预测新策略等,推动含能材料晶形预测方法向更精确的生长机制模型迈进。附参考文献82篇。 |
其他语种文摘
|
To provide guidance for reasonable use of the attachment energy model and the development of crystal morphology prediction in energetic materials,the applications of the attachment energy model in the crystal morphology prediction of energetic materials in the last decade were reviewed,and the crystal shape prediction results of the same systems were compared. The calculation protocol of attachment energy in vacuum and in solvent,as well as the structural model construction,were described in detail.The influence factors on the accurate calculation of the attachment energy,such as force field,model size, crystal-solvent interaction,and so on,were discussed.The recent development of the attachment energy model was also introduced, including the correction of solvent effect,the exploration of supersaturation,and the new strategy of crystal shape prediction. The aim of this review is to promote the crystal morphology prediction method of energetic materials to a more accurate mechanism model.With 82references. |
来源
|
火炸药学报
,2021,44(5):578-588 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202002003
|
关键词
|
附着能模型
;
含能材料
;
晶形预测
;
晶形控制
|
地址
|
西安近代化学研究所, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
武器工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7084533
|
参考文献 共
82
共5页
|
1.
舒远杰. 晶形控制及形成共晶:含能材料改性研究的重要途径.
火炸药学报,2015,38(5):1-9
|
CSCD被引
15
次
|
|
|
|
2.
周群. FOX-7晶体形貌对感度的影响.
火炸药学报,2014,37(5):67-69
|
CSCD被引
13
次
|
|
|
|
3.
蒋银禄. HMX结晶形貌研究进展.
材料导报,2013,27(23):11-17
|
CSCD被引
4
次
|
|
|
|
4.
Bondarchuk S V. Significance of crystal habit sphericity in the determination of the impact sensitivity of bistetrazolebased energetic salts.
CrystEngComm,2018,20(38):5718-5725
|
CSCD被引
3
次
|
|
|
|
5.
Song X. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
Journal of Hazardous Materials,2008,159(2):222-229
|
CSCD被引
43
次
|
|
|
|
6.
Van Der Heijden A E D M. Crystallization and characterization of RDX,HMX,and CL-20.
Crystal Growth &Design,2004,4(5):999-1007
|
CSCD被引
22
次
|
|
|
|
7.
Dandekar P. Engineering crystal morphology.
Annual Review of Materials Research,2013,43(1):359-386
|
CSCD被引
5
次
|
|
|
|
8.
Docherty R. Application of Bravais-Friedel-Donnay-Harker,attachment energy and Ising models to predicting and understanding the morphology of molecular crystals.
Journal of Physics D: Applied Physics,1991,24(2):89
|
CSCD被引
16
次
|
|
|
|
9.
Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology.
Journal of the American Chemical Society,1985,107(26):8239-8253
|
CSCD被引
35
次
|
|
|
|
10.
Zhang C. Occupancy model for predicting the crystal morphologies influenced by solvents and temperature,and its application to nitroamine explosives.
Crystal Growth &Design,2013,13(1):282-290
|
CSCD被引
15
次
|
|
|
|
11.
Liu N. Theoretical study on crystal morphologies of 1,1-diamino-2,2-dinitroethene in solvents: Modified attachment energy model and occupancy model.
Journal of Molecular Graphics and Modelling,2018,85:262-269
|
CSCD被引
2
次
|
|
|
|
12.
Zepeda-Ruiz L A. Size and habit evolution of PETN crystals-a lattice Monte Carlo study.
Journal of Crystal Growth,2006,291(2):461-467
|
CSCD被引
1
次
|
|
|
|
13.
Maiti A. Modeling growth,surface kinetics, and morphology evolution in PETN.
Propellants,Explosives, Pyrotechnics,2009,34(6):489-497
|
CSCD被引
2
次
|
|
|
|
14.
Shim H M. Molecular modeling on supersaturation-dependent growth habit of 1,1-diamino-2, 2-dinitroethylene.
Crystal Growth &Design,2015,15(4):1833-1842
|
CSCD被引
4
次
|
|
|
|
15.
Seo B. Prediction of the crystal morphology ofβ-HMX using ageneralized interfacial structure analysis model.
Crystal Growth &Design,2018,18(4):2349-2357
|
CSCD被引
2
次
|
|
|
|
16.
Song L. Uncovering the action of ethanol controlled crystallization of 3,4-bis(3-nitrofurazan-4-yl)furoxan crystal:A molecular dynamics study.
Journal of Molecular Graphics & Modelling,2019,92:303-312
|
CSCD被引
3
次
|
|
|
|
17.
Shim H M. Molecular approach to the effect of interfacial energy on growth habit ofε-HNIW.
Crystal Growth &Design,2016,16(11):6506-6513
|
CSCD被引
6
次
|
|
|
|
18.
Shim H M. Prediction of growth habit ofβ-cyclotetramethylene-tetranitramine crystals by the first-principles models.
Crystal Growth &Design,2015,15(8):3983-3991
|
CSCD被引
5
次
|
|
|
|
19.
Shim H M. Crystal morphology prediction of hexahydro-1,3,5-trinitro-1,3,5-triazine by the spiral growth model.
Crystal Growth &Design,2014,14(4):1802-1810
|
CSCD被引
4
次
|
|
|
|
20.
Lu J J. An improved prediction model of morphological modifications of organic crystals induced by additives.
Crystal Research &Technology,2003,38(1):63-73
|
CSCD被引
3
次
|
|
|
|
|