帮助 关于我们

返回检索结果

带纵摇前墙的新型振荡水柱式波浪能装置转换效率以及水动力性能数值研究
Numerical simulation on the extraction efficiency and hydrodynamic performance of an OWC device with a pitching front-wall

查看参考文献39篇

任翔 1   邓争志 1 *   程鹏达 2  
文摘 提出了一种带纵摇前墙的新型振荡水柱式波浪能(OWC)装置,借助OpenFOAM开源代码平台和waves2Foam工具包,数值模拟研究带纵摇前墙OWC装置的水动力性能和转换效率。主要研究前墙吃水d_1、前墙密度ρ、后墙吃水d_2、旋转约束力(用无量纲弹簧系数K表示)对该装置的反射系数C_r、透射系数C_t、耗散系数C_d和波能转换效率ξ的影响规律。结果表明,纵摇前墙能有效减少能量耗散,提高波能转换效率ξ;无量纲弹簧系数K对装置转换效率的影响主要集中在短波区域,且在K为0时装置具有最大的转换效率和最宽的高效频率带;前墙的密度和吃水深度对水动力系数影响不大;后墙的吃水深度对水动力系数影响较大,增加吃水深度能有效提高装置对于中短波和中长波段的波能转换效率,但对系统整体的能量耗散系数影响不大。
其他语种文摘 A novel oscillating water column (OWC) device with a pitching front-wall is numerically studied based on the open source platform OpenFOAM and the associated toolbox waves2Foam. The numerical model is employed to investigate the effects of the immersion depth of front-wall d_1,the density of the front-wall ρ,the immersion depth of back-wall d_2 and the rotational restraint force (represented by the dimensionless stiffness coefficient K) on the reflection coefficients C_r,transmission coefficients C_t,dissipation coefficient C_d and wave energy conversion efficiency ξ of this device. The results show that a pitching front-wall can effectively decrease the dissipation of energy and lead to the increase of wave energy conversion efficiency. The non-dimensional spring coefficient K also affects the wave energy conversion efficiency ξ of the device,especially in the short-wave regimes. The device has the maximum wave energy conversion efficiency and the widest efficient frequency band when K is 0. The density and the immersion depth of thin front-wall have insignificant influence on the hydrodynamic coefficient,while the immersion depth of back-wall affects the hydrodynamic coefficient efficiently. Increasing the draught of back-wall can effectively improve the wave energy conversion efficiency of the device in medium wave regimes,but has little effect on the overall energy dissipation coefficient.
来源 海洋工程 ,2021,39(5):66-77 【扩展库】
DOI 10.16483/j.issn.1005-9865.2021.05.007
关键词 OpenFOAM ; 振荡水柱 ; 纵摇前墙 ; 透射系数 ; 耗散系数 ; 波能转换效率
地址

1. 浙江大学海洋学院, 浙江, 舟山, 316021  

2. 中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1005-9865
学科 海洋学
基金 国家自然科学基金青年科学基金
文献收藏号 CSCD:7084246

参考文献 共 39 共2页

1.  游亚戈. 海洋能发电技术的发展现状与前景. 电力系统自动化,2010(14):1-12 CSCD被引 85    
2.  Falcao A. Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews,2010,14(3):899-918 CSCD被引 143    
3.  Heath T V. A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,370(1959):235-245 CSCD被引 21    
4.  Evans D V. The oscillating water column wave-energy device. Ima Journal of Applied Mathematics,1978(4):423-433 CSCD被引 12    
5.  Falnes J. Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves. Applied Ocean Research,1980,2(2):75-80 CSCD被引 7    
6.  Evans D V. Wave-power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics,1982,114(1):481-499 CSCD被引 11    
7.  Sarmento A. Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. Journal of Fluid Mechanics,1985,150:467-485 CSCD被引 9    
8.  Rezanejad K. Stepped sea bottom effects on the efficiency of nearshore oscillating water column device. Ocean Engineering,2013,70:25-38 CSCD被引 7    
9.  Britomelo A. Numerical modelling of OWC-shoreline devices including the effects of surrounding coastline and non-flat bottom. International Journal of Offshore & Polar Engineering,2001,11(2):147-154 CSCD被引 1    
10.  Ashlin S J. Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy,2016,96:341-353 CSCD被引 4    
11.  Ning Dezhi. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter-science direct. Applied Energy,2016,168:636-648 CSCD被引 24    
12.  Deng Z. Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Energy,2019,187:115941 CSCD被引 6    
13.  Jeong S T. An experimental study of a buoyant OWC wave energy converter. Proceedings of the International Conference on Asian and Pacific Coasts,2019:1135-1138 CSCD被引 1    
14.  Lee C H. Wave interactions with an oscillating water column. Proceedings of the International Offshore and Polar Engineering Conference,1996:82-90 CSCD被引 1    
15.  Zhang Y. Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy,2012,41(2):159-170 CSCD被引 4    
16.  Ketabdari M J. Numerical performance analysis of oscillating water column device using sea waves. International Journal of Environmental Studies,2014,71(6):840-849 CSCD被引 1    
17.  Deng Z. Theoretical analysis of an asymmetric offshore-stationary oscillating water column device with bottom plate. Journal of Waterway,Port,Coastal and Ocean Engineering,2020,146(4):04020013 CSCD被引 1    
18.  Rapaka E V. Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves. Ocean Engineering,2004,31(5/6):725-743 CSCD被引 4    
19.  Hong D C. Reduction of hydroelastic responses of a very-long floating structure by a floating oscillating-water-column breakwater system. Ocean Engineering,2006,33(5/6):610-634 CSCD被引 4    
20.  史宏达. 新型沉箱防波堤兼作岸式OWC波能装置的设计及稳定性研究. 中国海洋大学学报(自然科学版),2010,40(9):142-146 CSCD被引 6    
引证文献 6

1 郭权势 集成于方箱防波堤的双气室振荡水柱波能装置转换效率研究 海洋工程,2022,40(2):106-117
CSCD被引 3

2 毛艳军 海上环形观光平台内域水体共振响应研究 海洋工程,2022,40(5):49-56
CSCD被引 0 次

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号