带纵摇前墙的新型振荡水柱式波浪能装置转换效率以及水动力性能数值研究
Numerical simulation on the extraction efficiency and hydrodynamic performance of an OWC device with a pitching front-wall
查看参考文献39篇
文摘
|
提出了一种带纵摇前墙的新型振荡水柱式波浪能(OWC)装置,借助OpenFOAM开源代码平台和waves2Foam工具包,数值模拟研究带纵摇前墙OWC装置的水动力性能和转换效率。主要研究前墙吃水d_1、前墙密度ρ、后墙吃水d_2、旋转约束力(用无量纲弹簧系数K表示)对该装置的反射系数C_r、透射系数C_t、耗散系数C_d和波能转换效率ξ的影响规律。结果表明,纵摇前墙能有效减少能量耗散,提高波能转换效率ξ;无量纲弹簧系数K对装置转换效率的影响主要集中在短波区域,且在K为0时装置具有最大的转换效率和最宽的高效频率带;前墙的密度和吃水深度对水动力系数影响不大;后墙的吃水深度对水动力系数影响较大,增加吃水深度能有效提高装置对于中短波和中长波段的波能转换效率,但对系统整体的能量耗散系数影响不大。 |
其他语种文摘
|
A novel oscillating water column (OWC) device with a pitching front-wall is numerically studied based on the open source platform OpenFOAM and the associated toolbox waves2Foam. The numerical model is employed to investigate the effects of the immersion depth of front-wall d_1,the density of the front-wall ρ,the immersion depth of back-wall d_2 and the rotational restraint force (represented by the dimensionless stiffness coefficient K) on the reflection coefficients C_r,transmission coefficients C_t,dissipation coefficient C_d and wave energy conversion efficiency ξ of this device. The results show that a pitching front-wall can effectively decrease the dissipation of energy and lead to the increase of wave energy conversion efficiency. The non-dimensional spring coefficient K also affects the wave energy conversion efficiency ξ of the device,especially in the short-wave regimes. The device has the maximum wave energy conversion efficiency and the widest efficient frequency band when K is 0. The density and the immersion depth of thin front-wall have insignificant influence on the hydrodynamic coefficient,while the immersion depth of back-wall affects the hydrodynamic coefficient efficiently. Increasing the draught of back-wall can effectively improve the wave energy conversion efficiency of the device in medium wave regimes,but has little effect on the overall energy dissipation coefficient. |
来源
|
海洋工程
,2021,39(5):66-77 【扩展库】
|
DOI
|
10.16483/j.issn.1005-9865.2021.05.007
|
关键词
|
OpenFOAM
;
振荡水柱
;
纵摇前墙
;
透射系数
;
耗散系数
;
波能转换效率
|
地址
|
1.
浙江大学海洋学院, 浙江, 舟山, 316021
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-9865 |
学科
|
海洋学 |
基金
|
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:7084246
|
参考文献 共
39
共2页
|
1.
游亚戈. 海洋能发电技术的发展现状与前景.
电力系统自动化,2010(14):1-12
|
CSCD被引
85
次
|
|
|
|
2.
Falcao A. Wave energy utilization: A review of the technologies.
Renewable and Sustainable Energy Reviews,2010,14(3):899-918
|
CSCD被引
143
次
|
|
|
|
3.
Heath T V. A review of oscillating water columns.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,370(1959):235-245
|
CSCD被引
21
次
|
|
|
|
4.
Evans D V. The oscillating water column wave-energy device.
Ima Journal of Applied Mathematics,1978(4):423-433
|
CSCD被引
12
次
|
|
|
|
5.
Falnes J. Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves.
Applied Ocean Research,1980,2(2):75-80
|
CSCD被引
7
次
|
|
|
|
6.
Evans D V. Wave-power absorption by systems of oscillating surface pressure distributions.
Journal of Fluid Mechanics,1982,114(1):481-499
|
CSCD被引
11
次
|
|
|
|
7.
Sarmento A. Wave generation by an oscillating surface-pressure and its application in wave-energy extraction.
Journal of Fluid Mechanics,1985,150:467-485
|
CSCD被引
9
次
|
|
|
|
8.
Rezanejad K. Stepped sea bottom effects on the efficiency of nearshore oscillating water column device.
Ocean Engineering,2013,70:25-38
|
CSCD被引
7
次
|
|
|
|
9.
Britomelo A. Numerical modelling of OWC-shoreline devices including the effects of surrounding coastline and non-flat bottom.
International Journal of Offshore & Polar Engineering,2001,11(2):147-154
|
CSCD被引
1
次
|
|
|
|
10.
Ashlin S J. Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics.
Renewable Energy,2016,96:341-353
|
CSCD被引
4
次
|
|
|
|
11.
Ning Dezhi. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter-science direct.
Applied Energy,2016,168:636-648
|
CSCD被引
24
次
|
|
|
|
12.
Deng Z. Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study.
Energy,2019,187:115941
|
CSCD被引
6
次
|
|
|
|
13.
Jeong S T. An experimental study of a buoyant OWC wave energy converter.
Proceedings of the International Conference on Asian and Pacific Coasts,2019:1135-1138
|
CSCD被引
1
次
|
|
|
|
14.
Lee C H. Wave interactions with an oscillating water column.
Proceedings of the International Offshore and Polar Engineering Conference,1996:82-90
|
CSCD被引
1
次
|
|
|
|
15.
Zhang Y. Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device.
Renewable Energy,2012,41(2):159-170
|
CSCD被引
4
次
|
|
|
|
16.
Ketabdari M J. Numerical performance analysis of oscillating water column device using sea waves.
International Journal of Environmental Studies,2014,71(6):840-849
|
CSCD被引
1
次
|
|
|
|
17.
Deng Z. Theoretical analysis of an asymmetric offshore-stationary oscillating water column device with bottom plate.
Journal of Waterway,Port,Coastal and Ocean Engineering,2020,146(4):04020013
|
CSCD被引
1
次
|
|
|
|
18.
Rapaka E V. Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves.
Ocean Engineering,2004,31(5/6):725-743
|
CSCD被引
4
次
|
|
|
|
19.
Hong D C. Reduction of hydroelastic responses of a very-long floating structure by a floating oscillating-water-column breakwater system.
Ocean Engineering,2006,33(5/6):610-634
|
CSCD被引
4
次
|
|
|
|
20.
史宏达. 新型沉箱防波堤兼作岸式OWC波能装置的设计及稳定性研究.
中国海洋大学学报(自然科学版),2010,40(9):142-146
|
CSCD被引
6
次
|
|
|
|
|