Fe(Ⅱ)浓度对硫酸盐还原菌去除水体中砷和锑的影响
Effect of different contents of Fe(Ⅱ) on removal of arsenic and antimony from water by sulfate reducing bacteria
查看参考文献33篇
文摘
|
在硫酸盐还原菌处理体系中,加入浓度分别为10、20、50、100、200、500 mg·L~(-1)的Fe(Ⅱ),探讨不同浓度的Fe(Ⅱ)对硫酸盐还原菌去除As(Ⅲ)和Sb(Ⅲ)(初始浓度均为5 mg·L~(-1))的影响.结果显示,不同浓度Fe(Ⅱ)的加入对体系pH、硫化物含量及残余量均产生了显著影响;10 mg·L~(-1)和20 mg·L~(-1)的Fe(Ⅱ)对硫酸盐还原菌去除As(Ⅲ)和Sb(Ⅲ)的影响并不显著,随着Fe(Ⅱ)浓度的升高,体系中As(Ⅲ)和Sb(Ⅲ)的去除率均有明显提高;经过15 d的静置处理,500 mg·L~(-1) Fe(Ⅱ)对硫酸盐还原菌去除As(Ⅲ)和Sb(Ⅲ)的促进作用最为明显,使得As(Ⅲ)和Sb(Ⅲ)的去除率从不加Fe(Ⅱ)时的30.2%、 83.8%分别提高到98.2%、100%;比较每个Fe(Ⅱ)浓度下As(Ⅲ)和Sb(Ⅲ)的去除率发现,Sb(Ⅲ)的去除率均高于As(Ⅲ).研究表明,硫酸盐还原菌处理体系中As(Ⅲ)和Sb(Ⅲ)的去除效率将受基质pH、硫化物、共存离子等因素制约,也受到自身化学性质的影响,适量Fe(Ⅱ)的加入提高了As(Ⅲ)和Sb(Ⅲ)的去除效率,并降低了固相中As(Ⅲ)和Sb(Ⅲ)复溶的可能性. |
其他语种文摘
|
In the treatment system of sulfate-reducing bacteria, Fe(Ⅱ) reagent at a specific concentration (10, 20, 50, 100, 200, and 500 mg·L~(-1)) was added at each time to a treatment system of sulfate-reducing bacteria (SRB), to investigate the effect of concentration of Fe(Ⅱ) on the removal of As(Ⅲ) and Sb(Ⅲ)—initial concentrations of both were at 5 mg·L~(-1)—by SRB. The results showed that all Fe(Ⅱ) reagents had a significant effect on the pH, sulfide content, and residual of the treatment system, 10 and 20 mg·L~(-1) of Fe(Ⅱ) had no significant effect on the removal of As(Ⅲ) and Sb(Ⅲ) by SRB. However, the removal rate of As(Ⅲ) and Sb(Ⅲ) in the system improved with the Fe(Ⅱ) concentration and thus, 500 mg·L~(-1) Fe(Ⅱ) had the largest effect on the removal of As(Ⅲ) and Sb(Ⅲ) by SRB (compared to the control when adding no Fe(Ⅱ), the removal rate of As(Ⅲ) and Sb(Ⅲ) increased from 30.2% and 83.8% to 98.2% and 100% in a 15-day static treatment, respectively). In each treatment, the removal rate of Sb(Ⅲ) was higher than that of As(Ⅲ). This study indicates that the removal efficiency of As(Ⅲ) and Sb(Ⅲ) in the SRB treatment system is influenced by substrate pH, sulfide, coexisting ions, etc., as well as their own chemical properties and the addition of appropriate amount of Fe(Ⅱ) can improve the removal efficiency and at the same time, reduce the resolution of As(Ⅲ) and Sb(Ⅲ) from the solid phase. |
来源
|
环境化学
,2021,40(10):3171-3179 【核心库】
|
DOI
|
10.7524/j.issn.0254-6108.2020060401
|
关键词
|
硫酸盐还原菌
;
Fe(Ⅱ)
;
砷
;
锑
|
地址
|
1.
贵州师范学院地理与资源学院, 贵阳, 550018
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
3.
贵州师范学院化学与材料学院, 贵阳, 550018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6108 |
学科
|
环境污染及其防治 |
基金
|
国家自然科学基金
;
贵州师范学院2018年度校级博士课题
|
文献收藏号
|
CSCD:7081930
|
参考文献 共
33
共2页
|
1.
Liu J L. Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal (loid) tailings.
Environmental Pollution,2019,255:113165
|
CSCD被引
3
次
|
|
|
|
2.
Kulp T R. Microbiological reduction of Sb(V)in anoxic freshwater sediments.
Environmental Science & Technology,2014,48(1):218-226
|
CSCD被引
7
次
|
|
|
|
3.
Han Y. Interaction of Sb(III) with iron sulfide under anoxic conditions: Similarities and differences compared to As(III) interactions.
Chemosphere,2018,195:762-770
|
CSCD被引
3
次
|
|
|
|
4.
Ren M. Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation.
Journal of Hazardous Materials,2019,367:427-436
|
CSCD被引
3
次
|
|
|
|
5.
Burton E D. Antimony mobility in reducing environments: The effect of microbial iron (III)-reduction and associated secondary mineralization.
Geochimica et Cosmochimica Acta,2019,245:278-289
|
CSCD被引
11
次
|
|
|
|
6.
Ungureanu G. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption.
Journal of Environmental Management,2015,151:326-342
|
CSCD被引
52
次
|
|
|
|
7.
He M. Antimony pollution in China.
Science of the Total Environment,2012,421/422(3):41-50
|
CSCD被引
32
次
|
|
|
|
8.
Sun X. Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients.
Microbial Ecology,2019,78(3):589-602
|
CSCD被引
1
次
|
|
|
|
9.
Arsic M. Diffusive gradients in thin films reveals differences in antimony and arsenic mobility in a contaminated wetland sediment during an oxic-anoxic transition.
Environmental Science & Technology,2018,52(3):1118-1127
|
CSCD被引
9
次
|
|
|
|
10.
Liu F. Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources.
International Biodeterioration & Biodegradation,2018,126:152-159
|
CSCD被引
3
次
|
|
|
|
11.
Alam R. Applications of biological sulfate reduction for remediation of arsenic-A review.
Chemosphere,2019,222:932-944
|
CSCD被引
11
次
|
|
|
|
12.
De Matos L P. Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources.
Chemical Engineering Journal,2018,334:1630-1641
|
CSCD被引
5
次
|
|
|
|
13.
Wang H. Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation-precipitation.
Bioresource Technology,2013,146(10):799-802
|
CSCD被引
8
次
|
|
|
|
14.
Zhang G. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria.
International Biodeterioration & Biodegradation,2016,115:148-155
|
CSCD被引
8
次
|
|
|
|
15.
Teclu D. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria.
Water Research,2008,42(19):4885-4893
|
CSCD被引
11
次
|
|
|
|
16.
Sahinkaya E. Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor.
Minerals Engineering,2015,75:133-139
|
CSCD被引
3
次
|
|
|
|
17.
Altun M. Arsenic removal in a sulfidogenic fixed-bed column bioreactor.
Journal of Hazardous Materials,2014,269(1):31-37
|
CSCD被引
10
次
|
|
|
|
18.
Ye L. Sulfate-Reducing bacteria mobilize adsorbed antimonate by thioantimonate formation.
Environmental Science & Technology Letters,2019,6(7):418-422
|
CSCD被引
3
次
|
|
|
|
19.
Lee M K. Field-scale bioremediation of arsenic-contaminated groundwater using sulfate-reducing bacteria and biogenic pyrite.
Bioremediation Journal,2019,23(1):1-21
|
CSCD被引
2
次
|
|
|
|
20.
Fu Z. Influence of reducing conditions on the release of antimony and arsenic from a tailings sediment.
Journal of Soils and Sediments,2016,16(10):2471-2481
|
CSCD被引
3
次
|
|
|
|
|