高级地图匹配算法:研究现状和趋势
Advanced Map Matching Algorithms: A Survey and Trends
查看参考文献75篇
文摘
|
地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高精度地图匹配。迄今已有许多地图匹配算法相继提出,但鲜有研究对这些算法进行全面总结.为此,对近十年提出的地图匹配算法进行调研,归纳出地图匹配算法的统一框架及常用时空特征.从模型或实现技术角度分类发现:现有算法大都采用HMM(Hidden Markov Model)模型,其次是最大权重模型;深度学习技术近期开始用于地图匹配,将是未来高精度地图匹配研究的趋势. |
其他语种文摘
|
Map matching is a necessary procedure for many trajectory data mining and various location-based applications.Map matching algorithms are continuously evolving with the development of positioning techniques and application requirements.Research on map matching has undergone several stages, from real-time GPS data map matching, to low-sampling rate GPS trajectories offline map matching, to recently non-GPS positioning data or high resolution map matching. Various advanced map matching algorithms have been proposed.However, there is a short of a complete review of recent map matching algorithms.To bridge this gap, this paper conducts a comprehensive survey on map matching algorithms proposed in the last decade.A general framework of map matching algorithms is extracted, and spatial or spatial-temporal features commonly used in these algorithms are summarized.From the technical perspective, the HMM is the most commonlyused model in existing algorithms, before the maximum weights model.The deep learning technique has been recently applied into map matching, and is becoming a future trend for high resolution map matching. |
来源
|
电子学报
,2021,49(9):1818-1829 【核心库】
|
DOI
|
10.12263/DZXB.20200379
|
关键词
|
地图匹配
;
路网数据
;
轨迹数据
;
HMM
;
CRF(Conditional Random Fields)
;
路径推断
|
地址
|
1.
浙江师范大学数学与计算机科学学院, 浙江, 金华, 321004
2.
杭州电子科技大学计算机学院, 浙江, 杭州, 310018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
浙江省自然科学基金
;
浙江省教育厅项目
|
文献收藏号
|
CSCD:7077358
|
参考文献 共
75
共4页
|
1.
Gu F Q. Indoor localization improved by spatial context-a survey.
ACM Comput. Surv,2019,52(3):1-35
|
CSCD被引
7
次
|
|
|
|
2.
Wu Y. HTrack: An efficient heading-aided map matching for indoor localization and tracking.
IEEE Sensors Journal,2019,19(8):3100-3110
|
CSCD被引
2
次
|
|
|
|
3.
Zhou R. FreeTrack: device-free human tracking with deep neural networks and particle filtering.
IEEE Systems Journal,2020,14(2):2990-3000
|
CSCD被引
3
次
|
|
|
|
4.
Chen P. Path distance-based map matching for Wi-Fi fingerprinting positioning.
Future Generation Computer Systems,2020,107:82-94
|
CSCD被引
2
次
|
|
|
|
5.
Fang S K. EnAcq: energy-efficient GPS trajectory data acquisition based on improved map matching.
ACM SIGSPATIAL GIS'11,2011:221-230
|
CSCD被引
1
次
|
|
|
|
6.
Dong J X. A heuristics based global navigation satellite system data reduction algorithm integrated with map-matching.
Annals of Operations Research,2020,290(1):731-746
|
CSCD被引
1
次
|
|
|
|
7.
Gong X R. High-performance spatiotemporal trajectory matching across heterogeneous data sources.
Future Generation Computer Systems,2020,105:148-161
|
CSCD被引
7
次
|
|
|
|
8.
Chao P F. A survey and quantitative study on map inference algorithms from GPS trajectories.
IEEE Transactions on Knowledge and Data Engineering (Early Access)
|
CSCD被引
1
次
|
|
|
|
9.
Zong F. Taxi drivers' cruising patterns-insights from taxi GPS traces.
IEEE Transactions on Intelligent Transportation Systems,2019,20(2):571-582
|
CSCD被引
2
次
|
|
|
|
10.
Li L. Trajectory data-based traffic flow studies: A revisit.
Transportation Research Part C: Emerging Technologies,2020,114:225-240
|
CSCD被引
13
次
|
|
|
|
11.
Chen D. Approximate map matching with respect to the Frechet distance.
ALENEX 2011,2011:75-83
|
CSCD被引
1
次
|
|
|
|
12.
Velaga N R. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems.
Transportation Research Part C: Emerging Technologies,2009,17(6):672-683
|
CSCD被引
20
次
|
|
|
|
13.
Quddus M A. Current map-matching algorithms for transport applications: State-of-the art and future research directions.
Transportation Research Part C: Emerging Technologies,2007,15(5):312-328
|
CSCD被引
47
次
|
|
|
|
14.
Wei H. Map matching: Comparison of approaches using sparse and noisy data.
ACM SIG-SPATIAL GIS'13,2013:444-447
|
CSCD被引
1
次
|
|
|
|
15.
Hashemi M. A critical review of realtime map-matching algorithms: Current issues and future directions.
Computers, Environment and Urban Systems,2014,48:153-165
|
CSCD被引
13
次
|
|
|
|
16.
Singh J. Evaluating the performance of map matching algorithms for navigation systems: an empirical study.
Spatial Information Research,2018,27:63-74
|
CSCD被引
1
次
|
|
|
|
17.
Kubicka M. Comparative study and application-oriented classification of vehicular map-matching methods.
IEEE Intelligent Transportation Systems Magazine,2018,10(2):150-166
|
CSCD被引
4
次
|
|
|
|
18.
高文超. 路网匹配算法综述.
软件学报,2018,29(2):225-250
|
CSCD被引
19
次
|
|
|
|
19.
Kumar P. A new technique to find candidate links for map matching for transportation applications.
The 8th International Conference on Communication Systems and Networks,2016:1-6
|
CSCD被引
1
次
|
|
|
|
20.
Koller H. Fast hidden Markov model map-matching for sparse and noisy trajectories.
ITSC 2015,2015:2557-2561
|
CSCD被引
1
次
|
|
|
|
|