帮助 关于我们

返回检索结果

高级地图匹配算法:研究现状和趋势
Advanced Map Matching Algorithms: A Survey and Trends

查看参考文献75篇

于娟 1   杨琼 2   鲁剑锋 1 *   韩建民 1   彭浩 1  
文摘 地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高精度地图匹配。迄今已有许多地图匹配算法相继提出,但鲜有研究对这些算法进行全面总结.为此,对近十年提出的地图匹配算法进行调研,归纳出地图匹配算法的统一框架及常用时空特征.从模型或实现技术角度分类发现:现有算法大都采用HMM(Hidden Markov Model)模型,其次是最大权重模型;深度学习技术近期开始用于地图匹配,将是未来高精度地图匹配研究的趋势.
其他语种文摘 Map matching is a necessary procedure for many trajectory data mining and various location-based applications.Map matching algorithms are continuously evolving with the development of positioning techniques and application requirements.Research on map matching has undergone several stages, from real-time GPS data map matching, to low-sampling rate GPS trajectories offline map matching, to recently non-GPS positioning data or high resolution map matching. Various advanced map matching algorithms have been proposed.However, there is a short of a complete review of recent map matching algorithms.To bridge this gap, this paper conducts a comprehensive survey on map matching algorithms proposed in the last decade.A general framework of map matching algorithms is extracted, and spatial or spatial-temporal features commonly used in these algorithms are summarized.From the technical perspective, the HMM is the most commonlyused model in existing algorithms, before the maximum weights model.The deep learning technique has been recently applied into map matching, and is becoming a future trend for high resolution map matching.
来源 电子学报 ,2021,49(9):1818-1829 【核心库】
DOI 10.12263/DZXB.20200379
关键词 地图匹配 ; 路网数据 ; 轨迹数据 ; HMM ; CRF(Conditional Random Fields) ; 路径推断
地址

1. 浙江师范大学数学与计算机科学学院, 浙江, 金华, 321004  

2. 杭州电子科技大学计算机学院, 浙江, 杭州, 310018

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  浙江省自然科学基金 ;  浙江省教育厅项目
文献收藏号 CSCD:7077358

参考文献 共 75 共4页

1.  Gu F Q. Indoor localization improved by spatial context-a survey. ACM Comput. Surv,2019,52(3):1-35 CSCD被引 7    
2.  Wu Y. HTrack: An efficient heading-aided map matching for indoor localization and tracking. IEEE Sensors Journal,2019,19(8):3100-3110 CSCD被引 2    
3.  Zhou R. FreeTrack: device-free human tracking with deep neural networks and particle filtering. IEEE Systems Journal,2020,14(2):2990-3000 CSCD被引 3    
4.  Chen P. Path distance-based map matching for Wi-Fi fingerprinting positioning. Future Generation Computer Systems,2020,107:82-94 CSCD被引 2    
5.  Fang S K. EnAcq: energy-efficient GPS trajectory data acquisition based on improved map matching. ACM SIGSPATIAL GIS'11,2011:221-230 CSCD被引 1    
6.  Dong J X. A heuristics based global navigation satellite system data reduction algorithm integrated with map-matching. Annals of Operations Research,2020,290(1):731-746 CSCD被引 1    
7.  Gong X R. High-performance spatiotemporal trajectory matching across heterogeneous data sources. Future Generation Computer Systems,2020,105:148-161 CSCD被引 7    
8.  Chao P F. A survey and quantitative study on map inference algorithms from GPS trajectories. IEEE Transactions on Knowledge and Data Engineering (Early Access) CSCD被引 1    
9.  Zong F. Taxi drivers' cruising patterns-insights from taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems,2019,20(2):571-582 CSCD被引 2    
10.  Li L. Trajectory data-based traffic flow studies: A revisit. Transportation Research Part C: Emerging Technologies,2020,114:225-240 CSCD被引 13    
11.  Chen D. Approximate map matching with respect to the Frechet distance. ALENEX 2011,2011:75-83 CSCD被引 1    
12.  Velaga N R. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems. Transportation Research Part C: Emerging Technologies,2009,17(6):672-683 CSCD被引 20    
13.  Quddus M A. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies,2007,15(5):312-328 CSCD被引 47    
14.  Wei H. Map matching: Comparison of approaches using sparse and noisy data. ACM SIG-SPATIAL GIS'13,2013:444-447 CSCD被引 1    
15.  Hashemi M. A critical review of realtime map-matching algorithms: Current issues and future directions. Computers, Environment and Urban Systems,2014,48:153-165 CSCD被引 13    
16.  Singh J. Evaluating the performance of map matching algorithms for navigation systems: an empirical study. Spatial Information Research,2018,27:63-74 CSCD被引 1    
17.  Kubicka M. Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intelligent Transportation Systems Magazine,2018,10(2):150-166 CSCD被引 4    
18.  高文超. 路网匹配算法综述. 软件学报,2018,29(2):225-250 CSCD被引 19    
19.  Kumar P. A new technique to find candidate links for map matching for transportation applications. The 8th International Conference on Communication Systems and Networks,2016:1-6 CSCD被引 1    
20.  Koller H. Fast hidden Markov model map-matching for sparse and noisy trajectories. ITSC 2015,2015:2557-2561 CSCD被引 1    
引证文献 8

1 李长乐 面向空地一体化交通的虚拟车道:发展阶段与关键技术 电子学报,2022,50(5):1255-1265
CSCD被引 2

2 陈永刚 虚拟应答器复合地图匹配方法研究 测绘科学,2022,47(12):192-199
CSCD被引 0 次

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号