富锂锰基正极材料在不同温度下的极化行为
Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures
查看参考文献36篇
杨夕馨
1,2,3
常增花
1,2
邵泽超
1,2
吴帅锦
1,2
王仁念
1,2
王建涛
1,2,3
卢世刚
1,2,3
*
文摘
|
富锂锰基正极材料作为极具潜力的下一代锂离子动力电池正极材料,在不同温度下电化学性能表现出很大差异,严重限制了其在实际环境中的应用。采用多种电化学测试表征了富锂锰基材料在5~45℃温度范围内电化学性能的差异,从极化的角度分析了材料性能与温度依赖关系的影响因素。结果表明:富锂锰基材料的充放电容量随着温度的降低而降低,主要源于高电压和低电压区间内氧/锰离子反应随温度降低极化显著增大,造成其贡献的容量显著降低。这主要是因为氧/锰离子本征动力学性能差使电荷转移过程具有较高的表观活化能。此外,氧/锰离子参与电荷补偿反应使材料结构发生较大变化,一方面诱发界面膜成分发生变化,增加了低电压区间界面锂离子传输表观活化能,另一方面造成充放电末期锂离子固相扩散具有较高的表观活化能。因此,改善富锂锰基材料氧/锰离子反应动力学是提高其环境适应性的主要措施。 |
其他语种文摘
|
Lithium-rich manganese-based cathode material is a promising next-generation lithium-ion battery cathode material,however,it exhibits significant differences in electrochemical performance at different temperatures,which severely limits the application in practical environments.A variety of electrochemical measures were used to characterize the difference in electrochemical performance of lithium-rich material within the temperature range of 5-45 ℃.The influencing factors of material properties and temperature dependence were analyzed from the perspective of polarization.The results show that the charge/discharge capacity of lithium-rich material decreases with decreasing temperature,which is mainly due to the significant increase in the polarization of the oxygen/ manganese ion reaction in the high-voltage and low-voltage ranges with decreasing temperature, resulting in a severe decrease in its capacity contribution.The significantly increased polarization is mainly caused by the poor intrinsic kinetic performance of oxygen/manganese ions,which leading to high apparent activation energy of the charge transfer process.In addition,the participation of oxygen and manganese ions in the charge compensation reaction changes the structure of the material seriously.It induces changes in the composition of the interface film,which increases the apparent activation energy of lithium ion transmission at the interface in the low voltage interval.Moreover,it causes bulk diffusion of lithium ions at the end of the charge and discharge process having higher apparent activation energy.Therefore,improving the oxygen/manganese ion reaction kinetics of lithium-rich material is the main method to enhance its environmental adaptability. |
来源
|
材料工程
,2021,49(9):69-78 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000376
|
关键词
|
锂离子电池
;
富锂锰基正极材料
;
电化学性能
;
极化
;
温度依赖性
|
地址
|
1.
有研科技集团有限公司, 国家动力电池创新中心, 北京, 100088
2.
国联汽车动力电池研究院有限责任公司, 北京, 100088
3.
北京有色金属研究总院, 北京, 100088
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家重点研发计划项目
;
国家自然科学基金
;
有研科技集团有限公司青年基金资助项目
|
文献收藏号
|
CSCD:7073077
|
参考文献 共
36
共2页
|
1.
Dunn B. Electrical energy storage for the grid:a battery of choices.
Science,2011,334(6058):928-935
|
CSCD被引
872
次
|
|
|
|
2.
Yang Z. Electrochemical energy storage for green grid.
Chemical Reviews,2011,111(5):3577-3613
|
CSCD被引
170
次
|
|
|
|
3.
Zhao T. The role of precipitant in the preparation of lithium-rich manganese-based cathode materials.
Chemical Physics Letters,2019,730:354-360
|
CSCD被引
1
次
|
|
|
|
4.
Deng B. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries.
Journal of Power Sources,2019,418:122-129
|
CSCD被引
2
次
|
|
|
|
5.
Hu S. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode.
Advanced Energy Materials,2019,9(34):1901795
|
CSCD被引
7
次
|
|
|
|
6.
蔺佳明. Li_2ZrO_3包覆锂离子电池正极材料Li[Li_(0.2)Ni_(0.2)Mn_(0.6)]O_2的制备及其电化学性能.
材料工程,2020,48(3):112-120
|
CSCD被引
1
次
|
|
|
|
7.
Wang M J. Co-regulating the surface and bulk structure of Li-rich layered oxides by aphosphor doping strategy for high-energy Li-ion batteries.
Journal of Materials Chemistry A,2019,7(14):8302-8314
|
CSCD被引
6
次
|
|
|
|
8.
Bao L. The effects of trace Yb doping on the electrochemical performance of Li-rich layered oxides.
ChemSusChem,2019,12(10):2294-2301
|
CSCD被引
9
次
|
|
|
|
9.
Wu Z L. Li_(1.2)Ni_(0.25)Mn_(0.55)O_2:a high-capacity cathode material with a homogeneous monoclinic Li_2MNO_3~-like superstructure.
Journal of Alloys and Compounds,2020,827:154202
|
CSCD被引
3
次
|
|
|
|
10.
Jiang X. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode.
Electrochimica Acta,2015,160:131-138
|
CSCD被引
7
次
|
|
|
|
11.
黄贤凯. 导电炭黑对富锂锰基层状氧化物电极性能的影响.
材料工程,2019,47(8):13-21
|
CSCD被引
3
次
|
|
|
|
12.
Yu C. Conductivity and electrochemical performance of cathode xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.1,0.2,0.3,0.4)at different temperatures.
Journal of Alloys and Compounds,2013,546:239-245
|
CSCD被引
7
次
|
|
|
|
13.
Vivekanantha M. Reactive template synthesis of Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 nanorod cathode for Li-ion batteries:influence of temperature over structural and electrochemical properties.
Electrochimica Acta,2019,317:398-407
|
CSCD被引
1
次
|
|
|
|
14.
Kou J. The role of cobalt content in improving low temperature performance of layered lithium-rich cathode materials for Li-ion batteries.
ACS Applied Materials &Interfaces,2015,7(32):17910-17918
|
CSCD被引
5
次
|
|
|
|
15.
Yu H. Electrochemical kinetics of the 0.5Li_2MnO_3·0.5LiMn_(0.42)Ni_(0.42)Co_(0.16)O_2‘composite' layered cathode material for lithium-ion batteries.
RSC Advances,2012,2(23):8797-8807
|
CSCD被引
7
次
|
|
|
|
16.
Yang S. Temperature-dependent lithium-ion diffusion and activation energy of Li_(1.2)Co_(0.13)Ni_(0.13)Mn_(0.54) O_2thin-film cathode at nanoscale by using electrochemical strain microscopy.
ACS Applied Materials &Interfaces,2017,9(16):13999-14005
|
CSCD被引
2
次
|
|
|
|
17.
Cui S. Optimized temperature effect of Li-ion diffusion with layer distance in Li(Ni_xMn_yCo_z)O_2cathode materials for high performance Li-ion battery.
Advanced Energy Materials,2016,6(4):1501309
|
CSCD被引
4
次
|
|
|
|
18.
Yabuuchi N. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li_2MNO_3~-LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2.
Journal of the American Chemical Society,2011,133(12):4404-4419
|
CSCD被引
78
次
|
|
|
|
19.
Thackeray M M. Comments on the structural complexity of lithium-rich Li_(1+x) M_(1-x)O_2 electrodes(M =Mn,Ni,Co)for lithium batteries.
Electrochemistry Communications,2006,8(9):1531-1538
|
CSCD被引
38
次
|
|
|
|
20.
Sathiya M. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes.
Nature Materials,2013,12(9):827-835
|
CSCD被引
77
次
|
|
|
|
|