掺杂对Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)阳极材料电化学性能影响研究进展
Research progress in effect of element doping on electrochemical properties of Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ) based anode materials
查看参考文献74篇
文摘
|
固体氧化物燃料电池是一种将化学能直接转化为电能的清洁、高效的能量转化器件。传统的金属陶瓷阳极材料存在碳沉积、硫中毒和氧化还原循环稳定性差等缺点,限制了其商业化应用。为了改善金属陶瓷阳极在实际应用中遇到的问题,近年来混合电子-离子导体的钙钛矿陶瓷阳极得到了长足的发展。其中,结构组成为Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)的阳极材料具有较好的稳定性、较高的电导率、合适的热膨胀系数和优异的电化学性能,因而被广泛研究,特别是元素掺杂。本工作根据钙钛矿ABO_3可掺杂的位置,分别从A位、B位和O位掺杂进行讨论,总结了各元素掺杂和掺杂量对Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)的容忍因子、晶体结构、稳定性、电导率、热膨胀系数和电化学性能等的影响。这些掺杂策略为改性Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)钙钛矿阳极提供了新颖的思路,此思路也可用于改性其他同类钙钛矿阳极材料。最后总结了Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)和典型钙钛矿陶瓷阳极材料的发展方向:一方面可通过阴离子掺杂和共掺杂策略进一步提高钙钛矿陶瓷阳极材料的性能;另一方面可采用密度泛函理论进一步阐明元素掺杂的作用机制。 |
其他语种文摘
|
Solid oxide fuel cell(SOFC)is a clean and efficient energy conversion device that can directly convert chemical energy to electricity.The state-of-the-art cermet anodes face various issues such as carbon deposition,sulfur poisoning and poor redox stabilities,which limit the application of SOFC.In order to avoid the problems of the cermet anodes,the perovskite anode materials with mixed electronic-ionic conductivities have drawn considerable attention in recent years.Among them,Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ) perovskite has good stability,high conductivity,suitable thermal expansion coefficient and excellent electrochemical performance,and thus has been widely studied,especially element doping. The element doping was discussed at A-site,B-site and O-site of Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ) perovskite,and the effects of doping elements and doping content on crystal structure,stability,electronic conductivity, thermal expansion and electrochemical performance were summarized.These doping strategies provide some novel ideas for modifying Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ) perovskite anode,which can also be used to modify other similar perovskite anode materials.Finally,the development direction of Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ) and typical ceramic anode materials was prospected.On one hand,the strategies of anion doping and codoping could be adopted to improve the performance of ceramic anode materials.On the other hand, the mechanism of element doping will be further clarified through the combination of doping strategy and theoretical calculation. |
来源
|
材料工程
,2021,49(9):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.001139
|
关键词
|
固体氧化物燃料电池
;
阳极材料
;
钙钛矿
;
Sr_2Fe_(1.5)Mo_(0.5)O_(6-δ)
;
元素掺杂
|
地址
|
1.
中国科学技术大学材料科学与工程系, 中国科学院能量转换材料重点实验室, 合肥, 230026
2.
安徽壹石通材料科技股份有限公司能源材料中心, 合肥, 230088
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金资助项目
;
安徽壹石通材料科技股份有限公司横向项目
|
文献收藏号
|
CSCD:7073071
|
参考文献 共
74
共4页
|
1.
Ormerod R M. Solid oxide fuel cells.
Chemical Society Reviews,2003,32(1):17-28
|
CSCD被引
26
次
|
|
|
|
2.
Adams T A. Energy conversion with solid oxide fuel cell systems:a review of concepts and outlooks for the short-and long-term.
Industrial & Engineering Chemistry Research,2013,52(9):3089-3111
|
CSCD被引
6
次
|
|
|
|
3.
Jacobson A J. Materials for solid oxide fuel cells.
Chemistry of Materials,2010,22(3):660-674
|
CSCD被引
48
次
|
|
|
|
4.
Kaur G.
Intermediate temperature solid oxide fuel cells:electrolytes, electrodes and interconnects,2020
|
CSCD被引
1
次
|
|
|
|
5.
Ruiz-Morales J C. Engineering of materials for solid oxide fuel cells and other energy and environmental applications.
Energy &Environmental Science,2010,3(11):1670-1681
|
CSCD被引
1
次
|
|
|
|
6.
Qiao J. Performance of mix-impregnated CeO_2-Ni/YSZ anodes for direct oxidation of methane in solid oxide fuel cells.
Fuel Cells,2009,9(5):729-739
|
CSCD被引
2
次
|
|
|
|
7.
Ringuede A. Ni1-xCox/YSZ cermet anodes for solid oxide fuel cells.
Electrochimica Acta,2002,48(4):437-442
|
CSCD被引
2
次
|
|
|
|
8.
Papaefthimiou V. On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation.
Advanced Energy Materials,2013,3(6):762-769
|
CSCD被引
3
次
|
|
|
|
9.
Park M. Coke-tolerant La_2SN_2O_7-Ni-Gd_(0.1)Ce_(0.9)O_(1.95)composite anode for direct methane-fueled solid oxide fuel cells.
Journal of Electroceramics,2018,40:323-331
|
CSCD被引
1
次
|
|
|
|
10.
Cheng Z. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs:electrochemical behavior, in situ characterization,modeling,and future perspectives.
Energy &Environmental Science,2011,4(11):4380-4409
|
CSCD被引
17
次
|
|
|
|
11.
Wang W. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels.
Chemical Reviews,2013,113(10):8104-8151
|
CSCD被引
32
次
|
|
|
|
12.
Boldrin P. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis.
Chemical Reviews,2016,116(22):13633-13684
|
CSCD被引
9
次
|
|
|
|
13.
Ebbesen S D. High temperature electrolysis in alkaline cells,solid proton conducting cells, and solid oxide cells.
Chemical Reviews,2014,114(21):10697-10734
|
CSCD被引
32
次
|
|
|
|
14.
Tao S W. A redox-stable efficient anode for solid-oxide fuel cells.
Nature Materials,2003,2(5):320-323
|
CSCD被引
56
次
|
|
|
|
15.
Tao S W. An efficient solid oxide fuel cell based upon single-phase perovskites.
Advanced Materials,2005,17(14):1734-1737
|
CSCD被引
7
次
|
|
|
|
16.
Zhang S. Bismuth doped La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)perovskite as novel redox-stable efficient anode for solid oxide fuel cell.
Journal of Materials Chemistry A,2020,8:11553-11563
|
CSCD被引
3
次
|
|
|
|
17.
Ramos T. Oxygen diffusion and surface exchange in La_(1-x)Sr_xFe_(0.8)Cr_(0.2)O_(3-δ)(x=0.2,0.4and 0.6).
Solid State Ionics,2004,170(3/4):275-286
|
CSCD被引
6
次
|
|
|
|
18.
Fowler D E. Stable,low polarization resistance solid oxide fuel cell anodes:La_(1-x)Sr_xCr_(1-x) FexO_(3-δ)(x =0.2-0.67).
Chemistry of Materials,2014,26(10):3113-3120
|
CSCD被引
3
次
|
|
|
|
19.
Wan Y. A-site bismuth doping,a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells.
Applied Catalysis B,2020,269:118809
|
CSCD被引
3
次
|
|
|
|
20.
Tsvetkova Y. Synthesis and study of compositions of the La-Sr-Ti-O system for SOFCs anode development.
Materials & Design,2009,30(1):206-209
|
CSCD被引
1
次
|
|
|
|
|