帮助 关于我们

返回检索结果

基于地形指数的格陵兰冰面水系建模与评价
MODELING SUPRAGLACIAL RIVER NETWORKS ON THE GREENLAND ICE SHEET USING THE TOPOGRAPHIC INDEX

查看参考文献47篇

毛玮 1   陆欣 1   陆瑶 1   杨康 1,2,3 *  
文摘 每年消融期,冰面融水通过冰面水系输送至冰盖边缘,造成格陵兰冰盖物质损失。冰面水系的动态变化决定了冰面融水输送的方式与效率,显著影响格陵兰冰盖物质平衡。作为决定冰面水系动态变化的关键因素之一,冰面地形对冰面水系动态变化的控制程度有待研究。本研究选取格陵兰冰盖西南部典型区域(~1800 km~2)作为研究区,以32 m空间分辨率ArcticDEM作为实验数据,利用地形湿度指数(Topographic Wetness Index, TWI)和最邻近河网高差指数(Height Above the Nearest Drainage, HAND)两种地形指数模拟冰面水系分布,结合2016-2019年消融期29景10 m空间分辨率Sentinel-2和30 m空间分辨率Landsat-8影像提取冰面水系作为验证数据,通过模糊比较揭示了地形指数建模冰面水系的精度。研究结果表明:地形指数能够较好地建模冰面水系分布(总体精度>72%),冰面水系分布主要受地形因素控制,将地形指数引入冰面水文的研究,有助于加强对于冰面水文过程的理解。
其他语种文摘 During the annual ablation period, a large amount of meltwater is transported to the margin of the Greenland ice sheet through supraglacial river networks, causing mass loss from the Greenland ice sheet.The dynamics of supraglacial river networks determine the flowpath and efficiency of meltwater routing, and significantly affect the mass balance of the Greenland ice sheet.As one of the key factors that determines the dynamics of supraglacial river networks, the control of the ice surface topography on the supraglacial river network's dynamics remain unknown.In this study, we modeled the distribution of supraglacial river networks on a typical melting region of the southwest Greenland ice sheet (approximately 1800 km~2) using the Topographic Wetness Index and the Height Above the Nearest Drainage method derived from the 32 m Arctic DEM.The modeling results were validated and compared with the frequency observations compiled from 29 scenes acquired from Sentinel-2 imagery at 10-m resolution and Landsat-8 imagery at 30-m resolution.The results show that the Topographic Wetness Index (TWI) and Height Above the Nearest Drainage(HAND) method can be used to model the spatial distribution of the Greenland ice sheet supraglacial river network with an overall accuracy greater than 72%;therefore, the spatial distribution of the supraglacial river network is mainly controlled by the ice surface topography.As shown here, applying topographic indices in the study of supraglacial hydrology can help to improve the understanding of supraglacial hydrological processes.
来源 极地研究 ,2021,33(3):351-362 【扩展库】
DOI 10.13679/j.jdyj.20200048
关键词 冰面水系 ; 地形湿度指数 ; 最邻近河网高差指数 ; Sentinel-2 ; Landsat-8 ; 格陵兰冰盖
地址

1. 南京大学地理与海洋科学学院, 江苏, 南京, 210023  

2. 江苏省地理信息技术重点实验室, 江苏省地理信息技术重点实验室, 江苏, 南京, 210023  

3. 南方海洋科学与工程广东省实验室(珠海), 南方海洋科学与工程广东省实验室(珠海), 广东, 珠海, 519080

语种 中文
文献类型 研究性论文
ISSN 1007-7073
学科 地球物理学;大气科学(气象学)
基金 国家重点研发计划 ;  国家自然科学基金 ;  中央高校基本科研业务费专项资金
文献收藏号 CSCD:7068765

参考文献 共 47 共3页

1.  Hanna E. The Greenland ice sheet: A global warming signal?. Weather,2003,58(9):351-357 CSCD被引 1    
2.  IMBIE TEAM. Mass balance of the Greenland ice sheet from 1992 to 2018. Nature,2020,579(7798):233-239 CSCD被引 5    
3.  Chu V W. Greenland ice sheet hydrology: A review. Progress in Physical Geography: Earth and Environment,2014,38(1):19-54 CSCD被引 7    
4.  Flowers G E. Hydrology and the future of the Greenland ice sheet. Nature Communications,2018,9(1):1-4 CSCD被引 4    
5.  Pitcher L H. Supraglacial streams and rivers. Annual Review of Earth and Planetary Sciences,2019,47(1):421-452 CSCD被引 4    
6.  Rennermalm A K. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach. Environmental Research Letters,2013,8(1):015017 CSCD被引 5    
7.  Yang K. Fluvial morphometry of supraglacial river networks on the southwest Greenland Ice Sheet. GIScience & Remote Sensing,2016,53(4):459-482 CSCD被引 3    
8.  效存德. 格陵兰冰盖监测、模拟及气候影响研究. 地球科学进展,2019,34(8):781-786 CSCD被引 6    
9.  杨康. 冰川表面水文过程研究进展. 冰川冻土,2016,38(6):1666-1678 CSCD被引 9    
10.  Yang K. A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(11):5212-5224 CSCD被引 7    
11.  Cook J M. Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. The Cryosphere,2020,14(1):309-330 CSCD被引 2    
12.  Fountain A G. Water flow through temperate glaciers. Reviews of Geophysics,1998,36(3):299-328 CSCD被引 12    
13.  Macferrin M. Rapid expansion of Greenland's low-permeability ice slabs. Nature,2019,573(7774):403-407 CSCD被引 2    
14.  Wientjes I G M. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere,2011,5(3):589-601 CSCD被引 4    
15.  Beven K J. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin,1979,24(1):43-69 CSCD被引 295    
16.  Guntner A. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resources Research,2004,40(5):W05114 CSCD被引 4    
17.  Sorensen R. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences,2006,10(1):101-112 CSCD被引 14    
18.  Nobre A D. HAND contour: A new proxy predictor of inundation extent. Hydrological Processes,2016,30(2):320-333 CSCD被引 5    
19.  胡凯衡. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报,2019,74(11):2303-2313 CSCD被引 16    
20.  Zheng X. River channel geometry and rating curve estimation using height above the nearest drainage. Journal of the American Water Resources Association,2018,54(4):785-806 CSCD被引 3    
引证文献 0 篇
论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号