摆线光束的微粒等间距操控(特邀)
Equal spacing control of particle via cycloidal beam (Invited)
查看参考文献22篇
文摘
|
轨道角动量(OAM)的发现为光镊的研究开辟了新的道路。但具有OAM的光束在操纵微粒时,由于生物细胞不可能大小形状完全相同,所以当其进行旋转等操作时,粒子运动速度的不均匀会导致粒子之间的间距不可控。针对该问题,首先通过任意曲线塑形技术,并为传统摆线公式附加曲率调控参数提出了一种调控模式丰富的摆线光束,理论分析了该光束的OAM和梯度力,证明了解决上述问题的可能性。最后在实验中实现了粒子在运动过程中的启停,且成功操纵三个粒子进行等间距旋转,实验测得三个微粒在整个旋转过程中间距变化的误差可以维持在纳米级。这项工作为未来光捕获和操纵多种微粒在其他领域的应用铺平了道路,特别是在生物科学领域。 |
其他语种文摘
|
The discovery of orbital angular momentum (OAM) opens up a new way for the study of optical tweezers.However, the size and shape of biological cells cannot be exactly the same, when the beam with OAM manipulates the particles.So, the uneven velocity of the particles will lead to uncontrollable spacing between the particles when it carries out operations such as rotation.To solve the problem, a cycloid beam with rich regulation modes was proposed by using an arbitrary curve shaping technique and adding curvature control parameters to the traditional cycloid formula.The OAM and gradient force of the cycloid beam was theoretically analyzed, and the possibility of solving the problem was theoretically analyzed.Finally, the start and stop of particles in the process of motion were realized in the experiment, and the three particles were successfully manipulated to rotate at the same distance.The experimental results show that the error of the distance variation of the three particles during the whole rotation process can be maintained at the nanometer level.The work paves the way for future applications of light to capture and manipulate a variety of particles in other fields, particularly in the biological sciences. |
来源
|
红外与激光工程
,2021,50(9):20210380 【核心库】
|
DOI
|
10.3788/IRLA20210380
|
关键词
|
物理光学
;
全光光镊
;
计算全息
;
空间光调制
|
地址
|
1.
河南科技大学物理工程学院, 河南, 洛阳, 471023
2.
河南科技大学化工与制药学院, 河南, 洛阳, 471023
3.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
河南省教育厅高等学校重点科研项目
;
瞬态光学与光子技术国家重点实验室
|
文献收藏号
|
CSCD:7068613
|
参考文献 共
22
共2页
|
1.
Ashkin A. Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett,1986,11(5):288-290
|
CSCD被引
359
次
|
|
|
|
2.
Abbondanzieri E A. Direct observation of base-pair stepping by RNA polymerase.
Nature,2005,438(7067):460-465
|
CSCD被引
23
次
|
|
|
|
3.
Wen J D. Following translation by single ribosomes one codon at a time.
Nature,2008,452(7187):598-603
|
CSCD被引
8
次
|
|
|
|
4.
Yan Shubin. Optical tweezers based on near-field optical theory.
Infrared and Laser Engineering. (in Chinese),2015,44(3):1034-1041
|
CSCD被引
3
次
|
|
|
|
5.
Cheng Shubo. Optical trapping characteristics of a metal microsphere coated with thick dielectric shell in the focused optical field.
Infrared and Laser Engineering. (in Chinese),2016,45(6):0621002
|
CSCD被引
1
次
|
|
|
|
6.
Allen L. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.
Phys Rev A,1992,45(11):8185
|
CSCD被引
754
次
|
|
|
|
7.
Zhang Jingchao. Analysis of radius effect on optical rotation of birefringent crystal particles.
Infrared and Laser Engineering. (in Chinese),2012,41(1):155-159
|
CSCD被引
2
次
|
|
|
|
8.
Qin Xueyun. Properties of optical vortex lattice generated via multiple plane wave interference.
Acta Optica Sinica. (in Chinese),2021,41(8):2126001
|
CSCD被引
1
次
|
|
|
|
9.
Ngo T T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.
Cell,2015,160(6):1135-1144
|
CSCD被引
9
次
|
|
|
|
10.
Reimann R. GHz rotation of an optically trapped nanoparticle in vacuum.
Phys Rev Lett,2018,121(3):033602
|
CSCD被引
25
次
|
|
|
|
11.
Rui G. Optically induced rotation of Rayleigh particles by arbitrary photonic spin.
Photonics Res,2019,7(1):69-79
|
CSCD被引
1
次
|
|
|
|
12.
Armstrong D J. Swimming force and behavior of optically trapped micro-organisms.
Optica,2020,7(8):989-994
|
CSCD被引
2
次
|
|
|
|
13.
Garces-Chavez V. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
Nature,2002,419(6903):145-147
|
CSCD被引
90
次
|
|
|
|
14.
Jesacher A. Reverse orbiting of microparticles in optical vortices.
Opt Lett,2006,31(19):2824-2826
|
CSCD被引
4
次
|
|
|
|
15.
Shanblatt E R. Extended and knotted optical traps in three dimensions.
Opt Express,2011,19(7):5833-5838
|
CSCD被引
9
次
|
|
|
|
16.
Rodrigo J A. Shaping of light beams along curves in three dimensions.
Opt Express,2013,21(18):20544-20555
|
CSCD被引
12
次
|
|
|
|
17.
Rodrigo J A. Freestyle 3D laser traps: Tools for studying light-driven particle dynamics and beyond.
Optica,2015,2(9):812-815
|
CSCD被引
14
次
|
|
|
|
18.
Li X Z. Is it possible to enlarge the trapping range of optical tweezers via a single beam?.
Appl Phys Lett,2019,114(8):081903
|
CSCD被引
4
次
|
|
|
|
19.
Rodrigo J A. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories.
Photonics Res,2021,9(1):1-12
|
CSCD被引
5
次
|
|
|
|
20.
Li L. Generation of optical vortex array along arbitrary curvilinear arrangement.
Opt Express,2018,26(8):9798-9812
|
CSCD被引
9
次
|
|
|
|
|