可见-近红外无热化连续变焦光学系统设计
Design of visible-near infrared athermal continuous zoom optical system
查看参考文献15篇
文摘
|
变焦系统中,动组间相对位置的变化会导致各镜组的初级像差特性发生变化,环境温度的变化还会导致各焦距位置热差的改变,给无热化连续变焦系统的设计造成较大困难。针对该问题,从光学系统像差模型出发,将变焦系统像差分为定组像差、动组内像差和动组间像差三类,并结合变焦系统的消色差和消热差模型,讨论了无热化连续变焦光学系统的设计原则,及变焦系统设计中各组元的光焦度分配和材料选用方法,给出了一个宽波段连续变焦光学系统设计实例,该系统F数为5、焦距范围为8~120 mm、焦面对角线长6.2 mm、波长范围为0.48~0.68 μm和0.7~0.9 μm。所述系统仅采用了七种普通光学玻璃材料,透镜总数12组16片,总长仅90 mm,在-40~60 ℃范围内,变焦全程均具有较好的成像质量和公差特性。 |
其他语种文摘
|
The primary aberration of each lens group will be changed with their movement, and the change of environment temperature will also lead to defocus, both of which will cause a lot of difficulties in the zoom lens design process.To solve this problem, aberration functions do depend and not depend on group movement were introduced based on optical aberration theory, and lens power distribution and material selection method were discussed with the achromatic and athermal design model futher.A visible-near infrared (Vis-Nir) optical system under the requirements of F/5, focal length of 8-120 mm, focal plane diameter of 6.2 mm, work waveband of 0.48-0.68 μm and 0.7-0.9 μm was designed with mechanically compensated method and optical passive athermal technology.The proposed zoom lens system, which used 7 kinds of common optical glass, consists of 12 groups 16 lenses, total length of only 90 mm, has good image quality and tolerance character among the zoom range within -40~60 ℃. |
来源
|
红外与激光工程
,2021,50(9):20210090 【核心库】
|
DOI
|
10.3788/IRLA20210090
|
关键词
|
光学设计
;
连续变焦
;
宽波段
;
无热化
;
光学透雾
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
物理学 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7068607
|
参考文献 共
15
共1页
|
1.
Hu Jixian. Design of miniaturization for fog transmission zoom lens.
Journal of Applied Optics. (in Chinese),2009,30(4):547-551
|
CSCD被引
1
次
|
|
|
|
2.
Xie Na. Athermalization design of visible light optical system based on grouping by weight.
Acta Optica Sinica. (in Chinese),2018,38(12):1222001
|
CSCD被引
2
次
|
|
|
|
3.
Du Weifeng. Analysis of passive athermalization structure design and integrated optomechanical-thermal of zoom lens of photoelectric countermeasure platform.
Laser & Optoelectronics Progress. (in Chinese),2020,57(13):131204
|
CSCD被引
2
次
|
|
|
|
4.
Wu Xiaojin. Relationship between athermalizing infrared optical system and zoom lens.
Infrared and Laser Engineering. (in Chinese),2002,31(3):249-252
|
CSCD被引
3
次
|
|
|
|
5.
Sasian J. Aberrations of zoom lens Kernel.
SPIE. 11106,2019:1110604
|
CSCD被引
1
次
|
|
|
|
6.
Sasian J.
Introduction to Aberrations in Optical Imaging Systems,2002
|
CSCD被引
1
次
|
|
|
|
7.
Hu Yuxi. Design of athermal optical system.
Acta Optica Sinica. (in Chinese),2000,20(10):1386-1391
|
CSCD被引
4
次
|
|
|
|
8.
Qu Rui. 0.4-1.7 μm wideband fast f-number optical system design.
Acta Optica Sinica. (in Chinese),2015,35(8):0806006
|
CSCD被引
2
次
|
|
|
|
9.
Xi Xiao. Application of athermalisation in optical systems.
Infrared and Laser Engineering. (in Chinese),2005,34(4):388-390
|
CSCD被引
1
次
|
|
|
|
10.
Kingslake R.
Lens Design Fundamentals,2010:137-167
|
CSCD被引
4
次
|
|
|
|
11.
Ellis I B.
Zoom lens system: US, 6961188,2005
|
CSCD被引
1
次
|
|
|
|
12.
Aurelian D. Toward the global optimum in zoom lens design.
SPIE. 8488,2012:848802
|
CSCD被引
2
次
|
|
|
|
13.
Tao Chunkan.
Zoom Lens Design. (in Chinese),1988:49-153
|
CSCD被引
2
次
|
|
|
|
14.
Wang Cunyan. Solving the cam curve of the compensation group about zoom lens using dynamic optical theory.
Acta Optica Sinica. (in Chinese),2006,26(6):891-894
|
CSCD被引
2
次
|
|
|
|
15.
Optical Research Associates.
Code V Reference Manual,2009
|
CSCD被引
5
次
|
|
|
|
|