纤维增强陶瓷基复合材料的加工研究进展与发展趋势
Research progress and development trend of fiber-reinforced ceramic matrix composites
查看参考文献55篇
文摘
|
纤维增强陶瓷基复合材料具有高比模量、高比强度、低热膨胀系数、耐高温、耐腐蚀和耐磨损等许多优良的力学性能。这些优良的特性使其在航天航空等领域的应用日益增加。但纤维增强陶瓷基复合材料具有非均质性、各向异性、硬度高和脆性大的特点,是一种典型的难加工材料。因此,有必要对纤维增强陶瓷基复合材料的加工机理进行深入的研究。本文系统介绍纤维增强陶瓷基复合材料的传统加工和非传统加工研究现状,并对各种加工工艺方法的发展趋势、优缺点、适用范围、存在问题及相应解决方法进行总结和概括。和传统加工方法相比,非传统加工方法具有比较明显的优势,是当前发展的主要方向。 |
其他语种文摘
|
Fiber-reinforced ceramic matrix composites have many excellent mechanical properties for their high specific modulus, high specific strength, low coefficient of thermal expansion, high temperature resistance, corrosion resistance and wear resistance.Due to these properties, fiber-reinforced ceramic matrix composites have been widely applied in aerospace and other fields.However,fiber-reinforced ceramic matrix composites are difficult to machine due to their heterogeneity,anisotropy,high hardness and brittleness.Therefore,it is necessary to conduct in-depth research on the machining mechanism of this kind of composites.This paper systematically reviews the research status of conventional machining method and non-conventional machining method of fiber-reinforced ceramic matrix composites.It also generalizes the development trend, advantages and disadvantages, application scope, existing problems, and corresponding solutions of various machining methods.Compared with the conventional machining method,non-conventional machining method has obvious advantages,which is the main direction of development at present. |
来源
|
航空材料学报
,2021,41(5):14-27 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000033
|
关键词
|
纤维增强陶瓷基复合材料
;
加工机理
;
传统加工方法
;
非传统加工方法
|
地址
|
1.
西北工业大学, 航空发动机高性能制造工业和信息化部重点实验室, 西安, 710072
2.
西北工业大学, 航空发动机先进制造技术教育部工程研究中心, 西安, 710072
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7068283
|
参考文献 共
55
共3页
|
1.
张长瑞.
陶瓷基复合材料,2001
|
CSCD被引
16
次
|
|
|
|
2.
Schmidt S. Advanced ceramic matrix composite materials for current and future propulsion technology applications.
Acta Astronautica,2004,55(3/9):409-420
|
CSCD被引
78
次
|
|
|
|
3.
Li G. Effects of fiber preform structures on the mechanical properties of C/SiC nuts and bolts.
Ceramics International,2016,42(11):12901-12906
|
CSCD被引
6
次
|
|
|
|
4.
Chung D. Materials for thermal conduction.
Applied Thermal Engineering,2001,21(16):1593-1605
|
CSCD被引
41
次
|
|
|
|
5.
Krenkel W. C/C-SiC composites for space applications and advanced friction systems.
Materials Science and Engineering: A,2005,412(1/2):177-181
|
CSCD被引
103
次
|
|
|
|
6.
Weinert K. Machining aspects for the drilling of C/C-SiC materials.
Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications,2008:287-301
|
CSCD被引
2
次
|
|
|
|
7.
Freitag D.
Ceramic matrix composites in opportunities for advanced ceramics to meet the needs of the industries of the future,1998
|
CSCD被引
1
次
|
|
|
|
8.
Voorde M H. CMC 's research in Europe and the future potential of CMC's in industry.
Ceramic Engineering and Science Proceedings,1996,17(4):3-21
|
CSCD被引
2
次
|
|
|
|
9.
Diaz O G. Towards understanding the cutting and fracture mechanism in ceramic matrix composites.
International Journal of Machine Tools & Manufacture,2017,118/119:12-25
|
CSCD被引
12
次
|
|
|
|
10.
Shan C. A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution.
Composite Structures,2020,251:112668
|
CSCD被引
5
次
|
|
|
|
11.
Li Y. Study of material removal mechanisms in grinding of C/SiC composites via singleabrasive scratch tests.
Ceramics International,2018,45(4):4729-4738
|
CSCD被引
17
次
|
|
|
|
12.
Chen J. Transformation of fracture mechanism and damage behavior of ceramic-matrix composites during nano-scratching.
Composites: Part A,2019,130:105756
|
CSCD被引
16
次
|
|
|
|
13.
Tashiro T. B30 endmill cutting for C/C-SiC composite(advanced machining technology).
Proceedings of the International Conference on Leading Edge Manufacturing in 21st century,2009
|
CSCD被引
1
次
|
|
|
|
14.
毕铭智.
C/SiC复合材料钻、铣加工技术的试验研究,2013
|
CSCD被引
9
次
|
|
|
|
15.
何涛. C/SiC复合材料铣削表面完整性研究.
南京航空航天大学学报,2014,46(5):701-706
|
CSCD被引
7
次
|
|
|
|
16.
Shan. Prediction of cutting forces in ball-end milling of 2.5D C/C composites.
Chinese Journal of Aeronautics,2016,29(3):824-830
|
CSCD被引
2
次
|
|
|
|
17.
Yuan S. Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining.
International Journal of Advanced Manufacturing Technology,2018,95:1751-1761
|
CSCD被引
7
次
|
|
|
|
18.
张国栋.
C/C-SiC复合材料钻削加工试验研究,2015
|
CSCD被引
4
次
|
|
|
|
19.
Xing Y. Assessment in drilling of C/C-SiC composites using brazed diamond drills.
Journal of Manufacturing Processes,2017,26(4):31-43
|
CSCD被引
11
次
|
|
|
|
20.
Diaz O G. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites(CMCs)after a material removal process.
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2019,743:1-11
|
CSCD被引
17
次
|
|
|
|
|