光谱选择性辐射红外隐身材料研究进展
Research progress on spectrally selective radiation infrared stealth materials
查看参考文献52篇
文摘
|
不断发展的红外探测技术和精确制导技术对导弹、高超声速飞行器等武器装备的生存和突防构成了日益严重的威胁,红外隐身技术在现代战争中扮演着越发重要的角色。传统低发射率涂层材料通常在整个红外波段具有低发射率特性,不具备光谱选择性,其辐射散热效果较差,不利于目标整体红外信号的降低。光谱选择性辐射红外隐身材料可以在降低大气窗口波段(3~5 μm和8~14 μm)发射率的同时,利用非窗口波段(5~8 μm)进行辐射散热,具备更高效的红外隐身性能,是目前研究关注的热点。本文主要介绍基于光子晶体、频率选择表面以及Fabry-Perot腔的三代光谱选择性辐射结构的研究现状和进展,总结了现有体系的优点以及存在的问题。目前,光谱选择性辐射红外隐身材料距离实际应用仍有很大差距,未来应当向着工艺更加简单、高温稳定性更强以及多波段兼容的方向继续发展。 |
其他语种文摘
|
The continuously developing infrared detection technology and precise guidance technology pose an increasingly serious threat to the survival and penetration of missiles, hypersonic aircraft and other weapons and equipment.Infrared stealth technology plays an increasingly important role in modern warfare.Traditional low-emissivity coating materials usually have low emissivity characteristics in the entire infrared band and do not have spectral selectivity.This causes a poor effect on radiative cooling, which is not conducive to the reduction of the overall infrared signal of the target.Spectrally selective radiation infrared stealth materials can reduce the emissivity of atmospheric windows (3-5 and 8-14 μm), while using non-atmospheric window (5-8 μm) for radiative cooling.They have more efficient infrared stealth performance, thus attracting a lot of attention currently.This article introduces the research status and progress of three-generation spectrally selective radiation structures, which are based on photonic crystals, frequency selective surfaces and Fabry-Perot cavities respectively, summarizes their advantages and problems.At present, the spectrally selective radiation infrared stealth material is still far from practical application.In the future, it should continuously develop in the direction of simpler technology, stronger high-temperature stability and multiband compatibility. |
来源
|
航空材料学报
,2021,41(5):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000059
|
关键词
|
光谱选择性辐射
;
红外隐身
;
光子晶体
;
频率选择表面
;
Fabry-Perot腔
|
地址
|
1.
国防科技大学空天科学学院, 新型陶瓷纤维及其复合材料国家重点实验室, 长沙, 410073
2.
复杂航空系统仿真重点实验室, 北京, 100071
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
湖南省自然科学基金
|
文献收藏号
|
CSCD:7068282
|
参考文献 共
52
共3页
|
1.
Wang L. Surface-modified CeO_2 coating with excellent thermal shock resistance performance and low infrared emissivity at high-temperature.
Surface and Coatings Technology,2019,357:559-566
|
CSCD被引
13
次
|
|
|
|
2.
王云萍. 美国天基红外导弹预警技术分析.
光电技术应用,2019,34(3):1-7
|
CSCD被引
6
次
|
|
|
|
3.
陈建光. 2018年美军天基信息支援装备技术综述.
中国航天,2019(5):27-29
|
CSCD被引
1
次
|
|
|
|
4.
Hao T. A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization.
Chinese Physics B,2013,23(2):025201
|
CSCD被引
1
次
|
|
|
|
5.
Baranwal N. Review of Infrared signature suppression systems using optical blocking method.
Defence Technology,2019,15(3):432-439
|
CSCD被引
8
次
|
|
|
|
6.
Xu R. Preparation of silver-plated hollow glass microspheres and its application in infrared stealth coating fabrics.
Progress in Organic Coatings,2019,131:1-10
|
CSCD被引
6
次
|
|
|
|
7.
Salihoglu O. Graphene-based adaptive thermal camouflage.
Nano letters,2018,18(7):4541-4548
|
CSCD被引
45
次
|
|
|
|
8.
Qu Y. Thermal camouflage based on the phase-changing material GST.
Light: Science & Applications,2018,7(1):1-10
|
CSCD被引
39
次
|
|
|
|
9.
Yu H. Effects of size,shape and floatage of Cu particles on the low infrared emissivity coatings.
Progress in Organic Coatings,2009,66(2):161-166
|
CSCD被引
27
次
|
|
|
|
10.
Chen J. Synthesis,characterization and infrared emissivity study of polyurethane/TiO_2 nanocomposites.
Applied Surface Science,2007,253(23):9154-9158
|
CSCD被引
21
次
|
|
|
|
11.
Peng L. A Multilayer film based selective thermal emitter for infrared stealth technology.
Advanced Optical Materials,2018,6(23):1801006
|
CSCD被引
31
次
|
|
|
|
12.
Lee N. Multiple resonance metamaterial emitter for deception of infrared emission with enhanced energy dissipation.
ACS Appl Mater Interfaces,2020,12(7):8862-8869
|
CSCD被引
7
次
|
|
|
|
13.
彭亮.
选择性低发射率涂层的设计与制备研究,2015
|
CSCD被引
4
次
|
|
|
|
14.
Lee N. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation.
ACS Appl Mater Interfaces,2019,11(23):21250-21257
|
CSCD被引
14
次
|
|
|
|
15.
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics.
Physical Review Letters,1987,58(20):2059-2062
|
CSCD被引
1787
次
|
|
|
|
16.
John S. Strong localization of photons in certain disordered dielectric superlattices.
Phys Rev Lett,1987,58(23):2486-2489
|
CSCD被引
1518
次
|
|
|
|
17.
张塬昆. 光子晶体红外隐身材料研究进展.
激光与红外,2013,43(9):967-971
|
CSCD被引
9
次
|
|
|
|
18.
卢仪. 基于光子晶体的红外隐身材料研究进展.
激光与光电子学进展,2019,56(8):32-41
|
CSCD被引
4
次
|
|
|
|
19.
Fleming J. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
Nature,2002,417(6884):52-55
|
CSCD被引
31
次
|
|
|
|
20.
Aliev A. Chalcogenide inverted opal photonic crystal as infrared pigments.
International Journal of Nanoscience,2006,5(1):157-172
|
CSCD被引
8
次
|
|
|
|
|