无人机载型曲面仿生复眼成像测速系统
UAV-borne Biomimetic Curved Compound-eye Imaging System for Velocity Measurement
查看参考文献15篇
文摘
|
基于仿生复眼的视觉优势,将曲面仿生复眼结构应用于无人机载光电探测系统,实现机载宽视场高分辨运动目标探测。根据生物复眼的结构形态,设计了六边形排列的曲面透镜阵列作为曲面仿生复眼,辅以光学中继转像子系统和CMOS图像传感器,构成曲面仿生复眼成像测速系统。该系统的成像视场可达98°×98°,系统焦距为5 mm,角分辨率为1.8 mrad,F数为3.5,系统体积为Ф123 mm×195 mm,重量为1.35 kg。根据仿生复眼的成像原理,利用仿生复眼成像系统中相邻小眼存在的视场重叠优势,提出了曲面仿生复眼的测速原理,使得多个小眼能够同时探测场景中的同一个目标。运动汽车的测速实验表明该测速方法能够有效提高运动目标测试的可靠性和准确性。 |
其他语种文摘
|
Based on the visual advantages of the biomimetic compound eye, the biomimetic curved compound-eye is applied to the unmanned aerial vehicle-borne photoelectric detection system to realize the airborne wide field-of-view and high-resolution detection of moving objects purposes. According to the characteristics of the biological compound eye,a lens array arranged on the curved surface in a hexagon is designed as compound-eye lens,combined with an optical relay subsystem and a CMOS image sensor to form a biomimetic curved compound-eye imaging and velocity measurement system. The developed biomimetic curved compound-eye imaging system has a field of view of 98°×98°,a system focal length of 5 mm,an angular resolution of 1.8 mrad and an F-number of 3.5. The size of the system is Ф123 mm×195 mm,and the weight is 1.35 kg. According to the imaging principle of the biomimetic compound-eye and by taking advantage of the overlapping field of views between adjacent ommatidia,the velocity measurement principle of the biomimetic curved compound-eye is proposed. The velocity measurement experiment of a moving car shows that the velocity measurement method can effectively improve the test reliability and accuracy of the moving target. |
来源
|
光子学报
,2021,50(9):0911004 【核心库】
|
DOI
|
10.3788/gzxb20215009.0911004
|
关键词
|
仿生复眼
;
成像系统
;
无人机载
;
大视场
;
测速系统
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 西安, 710072
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7068148
|
参考文献 共
15
共1页
|
1.
薛庆生. 大视场高分辨力星载成像光谱仪光学系统设计.
光学学报,2011,31(8):240-245
|
CSCD被引
2
次
|
|
|
|
2.
雷卫宁. 基于仿生复眼的大视场探测系统结构研究.
光学与光电技术,2016,14(3):62-66
|
CSCD被引
7
次
|
|
|
|
3.
郭书基. 基于大视场人工复眼定位技术.
光子学报,2016,45(5):0512003
|
CSCD被引
6
次
|
|
|
|
4.
Zhu H B. Design of high resolution objective on small UAV.
Electro-optic Technology Application,2016,31(3):5-8
|
CSCD被引
1
次
|
|
|
|
5.
梅贵. 空间高分辨率宽视场红外光学系统设计.
光学学报,2014,34(12):1222004
|
CSCD被引
8
次
|
|
|
|
6.
Brady D J. Multiscale gigapixel photography.
Nature,2012,486(7403):386-389
|
CSCD被引
53
次
|
|
|
|
7.
吴雄雄. 基于同心多尺度成像的机载光电系统探测能力分析.
光学学报,2018,38(4):0422001
|
CSCD被引
4
次
|
|
|
|
8.
Yang T. Compact compound-eye imaging module based on the diffractive microlens array for biometric fringerprint capturing.
Optics Express,2019,27(5):7513-7522
|
CSCD被引
2
次
|
|
|
|
9.
Xu H. Biomimetic curved compound-eye camera with a high resolution for the detection of distant moving objects.
Optics Letters,2020,45(24):6863-6866
|
CSCD被引
4
次
|
|
|
|
10.
Hui S. Optomechanical design of multiscale gigapixel digital camera.
Applied Optics,2013,52(8):1541-1549
|
CSCD被引
8
次
|
|
|
|
11.
Youn S H. Optical performance test and validation of microcameras in multiscale, gigapixel images.
Optics Express,2014,22(3):3712-3723
|
CSCD被引
5
次
|
|
|
|
12.
Marks D L. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager.
Applied Optics,2014,53(13):C54-C63
|
CSCD被引
23
次
|
|
|
|
13.
Llull P R. Characterization of the AWARE 40 wide-field-of-view visible imager.
Optica,2015,2(12):1086-1089
|
CSCD被引
12
次
|
|
|
|
14.
闫阿奇. 航天鱼眼相机光学系统设计的研究.
光学学报,2011,31(10):188-191
|
CSCD被引
2
次
|
|
|
|
15.
Wang Y. Optical system design of artificial compound eye based on field stitching.
Microwave & Optical Technology Letters,2017,59(6):1277-1279
|
CSCD被引
9
次
|
|
|
|
|