用于原子干涉测量的Raman光系统设计与实验
Design and Experiment of Raman Laser System for Atom Interferometric Measurement
查看参考文献17篇
文摘
|
研究了基于光学锁相环技术的Raman光系统,系统包含参考光、主激光和从激光三束激光,其中参考光采用调制转移光谱稳频后用做频率基准,主激光相对于参考光频差1 GHz实现相对于激发态远红失谐以避免激光与原子的直接作用,从激光相对于主激光频差6.8 GHz用于激发~(87)Rb原子基态超精细能级之间的跃迁,采用两套光学锁相环分别实现主、从激光的锁频锁相。测量结果表明,两套光学锁相环的相位噪声在100 Hz~1 MHz频段分别低于–70 dBc/Hz和–65 dBc/Hz,因此相位噪声对单次原子干涉重力测量的影响为5.3×10~(–7)。采用两台锥形放大器分别对主、从激光进行功率放大以保证主、从激光功率比严格为1∶2,采用光纤传输与空间光传输相结合的设计实现主、从激光的合束、偏振统一及频率调制,最终获得的Raman光总功率为180 mW。持续功率测量结果显示,在没有额外增加功率稳定元件的条件下Raman光的总功率最大起伏小于5%,满足原子干涉测量实验需求。 |
其他语种文摘
|
Based on optical phase-locked loop technology,a Raman laser system including three lasers, reference,master and slave lasers,is studied. Among which,the reference laser was firstly frequencylocked by modulated transfer spectrum technology and then as a standard frequency;the master laser, which has a frequency difference of 1 GHz relative to the reference laser,was red detuned from excited stated to prevent direct interaction between lasers and atoms;the salve laser,having a frequency difference of 6.8 GHz relative to the master laser,was used to excite the transmission between the hyperfine energy levels of ground state ~(87)Rb atoms. Respectively,the master and slave lasers were locked by two sets of optical phase-locked loop. The measurement results reveal that the phase noises of the two sets of optical phase-locked loop are within the range of 100 Hz to 1 MHz and lower than –70 dBc/Hz and –65 dBc/Hz respectively,and accordingly,the influence of phase noise on atom interferometric gravity measurement is as low as 5.3×10~(–7) per shot. The master and slave lasers are amplified by two separate taped-amplifiers to ensure that the master laser's power is half to that of the slave laser;the composition,polarization unification,and frequency modulation of both the master and slave lasers are realized by the combination laser transmission in fiber and free space. As a result,the Raman laser with a total power of 180 mW is realized,and the maximum fluctuation of total power less than 5% is achieved in long-term power measurement depended not on any additional power stabilizer,satisfying the experimental requirement of atom interferometry measurement. |
来源
|
光子学报
,2021,50(9):0914001 【核心库】
|
DOI
|
10.3788/gzxb20215009.0914001
|
关键词
|
原子干涉测量
;
Raman激光脉冲
;
受激Raman跃迁
;
光学锁相环
;
相位噪声
|
地址
|
1.
中国科学院西安光学精密机械研究所光学定向与瞄准技术研究室, 西安, 710119
2.
陕西师范大学物理学与信息技术学院, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学;机械、仪表工业 |
基金
|
中国科学院“西部之光”西部青年学者项目
;
陕西省重点研发计划
;
西安光学精密机械研究所“一三五”重点培育项目
|
文献收藏号
|
CSCD:7068139
|
参考文献 共
17
共1页
|
1.
Peters A. Measurement of gravitational acceleration by dropping atoms.
Nature,1999,400(6747):849-852
|
CSCD被引
70
次
|
|
|
|
2.
Fixler J B. Atom interferometer measurement of the Newtonian constant of gravity.
Science,2007,315(5808):74-77
|
CSCD被引
49
次
|
|
|
|
3.
Gaaloul N. Quantum tests of the equivalence principle with atom interferometry.
Acta Astronautica,2010,67(9):1059-1062
|
CSCD被引
2
次
|
|
|
|
4.
Richeson J A.
Gravity gradiometer aided inertial navigation within non-GNSS environments,2008
|
CSCD被引
8
次
|
|
|
|
5.
Leeuwen E H V. BHP develops airborne gravity gradiameter for mineral exploration.
The Leading Edge,2000,19(12):1296-1297
|
CSCD被引
8
次
|
|
|
|
6.
王义遒.
原子的激光冷却与陷俘,2007
|
CSCD被引
25
次
|
|
|
|
7.
Bouyer P. Microwave signal generation with optical injection locking.
Optics Letters,1996,21(18):1502-1504
|
CSCD被引
14
次
|
|
|
|
8.
Muller H. Atom interferometry with up to 24-photon-momentum-transfer beam splitters.
Physics Review Letter,2008,100(18):180405
|
CSCD被引
16
次
|
|
|
|
9.
Shahriar M S. Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband.
Optics Communications,2000,184(5/6):457-462
|
CSCD被引
3
次
|
|
|
|
10.
Xue Hongbo. Note:Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator.
Review of Scientific Instruments,2013,84(4):046104
|
CSCD被引
9
次
|
|
|
|
11.
Yim S H. Optical phase locking of two extended-cavity diodelasers with ultra-low phase noise for atom interferometry.
Applied Physics B,2014,115(4):491-495
|
CSCD被引
13
次
|
|
|
|
12.
Appel J. A versatile digital GHz phase lock for external cavity diode lasers.
Measurement Science and Technology,2009,20(5):055302
|
CSCD被引
13
次
|
|
|
|
13.
Marino A M. Phase-locked laser system for use in atomic coherence experiments.
Review of Scientific Instruments,2008,79(1):013104
|
CSCD被引
19
次
|
|
|
|
14.
Chu S. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure.
Physics Review Letter,1985,55(1):48-51
|
CSCD被引
82
次
|
|
|
|
15.
Schmidt M. A portable laser system for high-precision atom interferometry experiments.
Applied Physics B,2011,102(1):11-18
|
CSCD被引
16
次
|
|
|
|
16.
Leveque T. Low noise amplification of an optically carried microwave signal: application to atom interferometry.
Applied Physics B,2010,101(4):723-729
|
CSCD被引
2
次
|
|
|
|
17.
Cheinet P. Measurement of the sensitivity function in a time-domain atomic interferometer.
IEEE Transactions on Instrumentation & Measurement,2008,57(6):1141-1148
|
CSCD被引
13
次
|
|
|
|
|