基于同步电荷提取的高效多压电能俘获电路设计
High Efficiency Multi-piezoelectric Energy Harvesting Circuit Design Based on Synchronous Electric Charge Extraction
查看参考文献19篇
文摘
|
本文提出了一种基于同步电荷提取的高效多压电能俘获电路(High Efficiency Multi-piezoelectric Energy Harvesting Circuit Based on Synchronous Electric Charge Extraction, EM-SECE).所提出的电路利用改进的正负峰值检测结构,减小了压电元件(Piezoelectric Transducer, PZT)达到电压峰值处和开关动作之间的相位差,从而提高了单个压电元件的能量收集效率.并且利用单电感的时分复用,实现基于单电感的多个压电元件振动能俘获.所提出电路具有无整流桥结构,且可以实现自供电的特点.实验结果表明,相同实验条件下,单压电EM-SECE电路的俘获功率为标准能量俘获电路(SEH)最大功率的3.09倍;在仅用一个电感的情况下,双压电EM-SECE电路的俘获功率为两个单压电EMSECE电路之和的97%. |
其他语种文摘
|
In this paper, a high efficiency multi-piezoelectric harvesting circuit based on synchronous charge extraction (EM-SECE) is presented. The proposed circuit utilizes an improved positive and negative peak detection structure so that the phase difference between the peak voltage of the piezoelectric transducer and the switching action is reduced, and then the energy harvesting efficiency of the single piezoelectric transducer is improved. Further, using time division multiplexing of single inductor, multi-piezoelectric energy harvesting is achieved. The proposed circuit is of self-powered characteristic with no rectifying bridge structure. The experimental results show that under the same experimental condition, the harvesting power of the EM-SECE circuit for single piezoelectric transducer is 3.09 times than the maximum power of the standard energy harvesting circuit; with only one inductor, the harvesting power of the EM-SECE circuit with double piezoelectric transducers is 0.97 times of the harvesting power sum of two piezoelectric transducers. |
来源
|
电子学报
,2021,49(8):1625-1632 【核心库】
|
DOI
|
10.12263/DZXB.20200002
|
关键词
|
振动能采集
;
多压电
;
时分复用
;
自供电
;
同步电荷提取电路
|
地址
|
宁波大学信息科学与工程学院, 浙江, 宁波, 315211
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
NSFC-浙江两化融合联合基金
|
文献收藏号
|
CSCD:7055905
|
参考文献 共
19
共1页
|
1.
田贤忠. 一种射频能量捕获网络移动能量源均衡化充电策略.
电子学报,2018,46(12):2985-2992
|
CSCD被引
5
次
|
|
|
|
2.
Bandyopadhyay S. Platform architecture for solar,thermal,and vibration energy combining with MPPT and single inductor.
IEEE Journal of Solid-State Circuits,2012,47(9):2199-2215
|
CSCD被引
5
次
|
|
|
|
3.
Dagdeviren C. Conformal piezoelectric energy harvesting and storage from motions of the heart,lung,and diaphragm.
Proceedings of the National Academy of Sciences of the United States of America,2014,111(5):1927-1932
|
CSCD被引
33
次
|
|
|
|
4.
Lefeuvre E. High-performance piezoelectric vibration energy reclamation.
Proceedings of Spie the International Society for Optical Engineering,2004,5390:379-387
|
CSCD被引
4
次
|
|
|
|
5.
Badel A. Piezoelectric energy harvesting using a synchronized switch technique.
Journal of Intelligent Material Systems and Structures,2006,17(8/9):831-839
|
CSCD被引
9
次
|
|
|
|
6.
Lefeuvre E. A comparison between several vibration-powered piezoelectric generators for standalone systems.
Sensors and Actuators A:Physical,2006,126(2):405-416
|
CSCD被引
60
次
|
|
|
|
7.
Lefeuvre E. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction.
Journal of Intelligent Material Systems and Structures,2005,16(10):865-876
|
CSCD被引
42
次
|
|
|
|
8.
屈凤霞. 自供电的同步电荷提取电路的优化设计.
传感技术学报,2016,29(3):349-355
|
CSCD被引
7
次
|
|
|
|
9.
Romani A. Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers.
IEEE Transactions on power electronics,2014,29(2):729-739
|
CSCD被引
5
次
|
|
|
|
10.
Kwon D. A 2-μm BiCMOS rectifierfree AC-DC piezoelectric energy harvester-charger iC.
IEEE Transactions on Biomedical Circuits and Systems,2010,4(6):400-409
|
CSCD被引
2
次
|
|
|
|
11.
Dini M. A nanopower synchronous charge extractor IC for low-voltage piezoelectric energy harvesting with residual charge inversion.
IEEE Transactions on Power Electronics,2016,31(2):1263-1274
|
CSCD被引
2
次
|
|
|
|
12.
Ren X. Flexible lead-free BiFeO_3/PDMS-based nanogenerator as piezoelectric energy harvester.
Acs Applied Materials & Interfaces,2016,4(30):7324-7331
|
CSCD被引
1
次
|
|
|
|
13.
Ren X. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind.
Smart Materials and Structures,2018,27(6):065016
|
CSCD被引
6
次
|
|
|
|
14.
Zhao Y. Lead-free Bi_(5x)La_xTi_3FeO_(15)(x = 0,1)nanofibers toward wool keratin-based biocompatible piezoelectric nanogenerators.
Journal of Materials Chemistry C,2016,4(30):7324-7331
|
CSCD被引
5
次
|
|
|
|
15.
Shareef A. A rectifierless AC-DC interface circuit for ambient energy harvesting from low-voltage piezoelectric transducer array.
IEEE Transactions on Power Electronics,2019,34(2):1446-1457
|
CSCD被引
4
次
|
|
|
|
16.
Ottman G K. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply.
IEEE Transactions on Power Electronics,2002,17(5):669-676
|
CSCD被引
33
次
|
|
|
|
17.
Shim M. Self-Powered 30 μW to 10 mW piezoelectric energy harvesting system with 9.09 ms/V maximum power point tracking time.
IEEE Journal of Solid-State Circuits,2015,50(10):2367-2379
|
CSCD被引
6
次
|
|
|
|
18.
Lu S H. A Highly efficient P-SSHI rectifier for piezoelectric energy harvesting.
IEEE Transactions on Power Electronics,2015,30(10):5364-5369
|
CSCD被引
2
次
|
|
|
|
19.
Shi G. An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems.
Journal of Intelligent Material Systems and Structures,2016,27(16):2160-2178
|
CSCD被引
9
次
|
|
|
|
|