帮助 关于我们

返回检索结果

基于强化学习的多发导弹协同攻击智能制导律
Reinforcement Learning-based Intelligent Guidance Law for Cooperative Attack of Multiple Missiles

查看参考文献30篇

陈中原 1   韦文书 2   陈万春 1 *  
文摘 为实现多发导弹对目标的协同攻击,提升打击效能,提出一种基于深度确定性策略梯度下降神经网络的强化学习协同制导律。修正了基于线性交战动力学的剩余飞行时间估计方程,不再受小角度假设的约束,进而提高剩余飞行时间估计精度。以各弹的剩余飞行时间误差为协调变量,与各弹的剩余飞行距离一同作为强化学习算法的观测量。利用脱靶量和剩余飞行时间误差构造奖励函数,离线训练生成强化学习智能体。闭环制导过程中,强化学习智能体将实时生成可实现同时打击的制导指令。仿真结果表明:该强化学习制导律能够实现多发导弹对目标的同时攻击;与传统协同制导律相比,强化学习协同制导律的脱靶量较小,攻击时间误差也较小。
其他语种文摘 A reinforcement learning-based cooperative guidance law utlitizing a deep deterministic policy gradient descent neural network is proposed to achieve the cooperative attack of multiple missiles against a target and improve the attack effectiveness. The estimation equation of time-to-go based on the linear engagement dynamics is revised to improve the estimation accuracy of time-to-go, which is no longer restricted by the assumption of small angle. The time-to-go error of each missile is regarded as the coordination variable. The time-to-go error and range-to-go of each missile are used as the observables of the reinforcement learning algorithm. The reward function is constructed by using miss distance and time-to-go error, and then a reinforcement learning agent is generated by offline training. In the process of closed-loop guidance, the reinforcement learning agent generates guidance commands in real time, by that simultaneous attack can be achieved. Simulated results verify that the proposed reinforcement learning guidance law can achieve simultaneous attack on the target. Compared with the traditional cooperative guidance law, the reinforcement learning cooperative guidance law can be used to obtain smaller miss distances and smaller attack time errors.
来源 兵工学报 ,2021,42(8):1638-1647 【核心库】
DOI 10.3969/j.issn.1000-1093.2021.08.008
关键词 导弹 ; 协同制导律 ; 同时攻击 ; 强化学习 ; 深度确定性策略梯度下降算法
地址

1. 北京航空航天大学宇航学院, 北京, 100191  

2. 中国运载火箭技术研究院, 北京, 100076

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 武器工业
基金 2021年度"卓越百人"博士后支持计划项目 ;  国防基础科研基金
文献收藏号 CSCD:7048623

参考文献 共 30 共2页

1.  Garcia E. Cooperative missile guidance for active defense of air vehicles. IEEE Transactions on Aerospace & Electronic Systems,2018,54(2):706-721 CSCD被引 11    
2.  Kumar S R. Cooperative nonlinear guidance strategies for aircraft defense. Journal of Guidance, Control, and Dynamics,2016,40(1):124-138 CSCD被引 25    
3.  Shalumov V. Optimal cooperative guidance laws in a multiagent target-missile-defender engagement. Journal of Guidance, Control, and Dynamics,2019,42(9):1993-2006 CSCD被引 8    
4.  任章. 飞行器集群协同制导控制方法及应用研究. 导航定位与授时,2019,6(5):1-9 CSCD被引 7    
5.  赵建博. 多导弹协同制导研究综述. 航空学报,2017,38(1):17-29 CSCD被引 13    
6.  叶鹏鹏. 非持续连通通信拓扑下的多导弹协同制导. 兵工学报,2018,39(3):474-484 CSCD被引 9    
7.  Jeon I S. Homing guidance law for cooperative attack of multiple missiles. Journal of Guidance, Control, and Dynamics,2010,33(1):275-280 CSCD被引 132    
8.  Jeon I S. Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation. Journal of Guidance, Control, and Dynamics,2016,39(8):1885-1890 CSCD被引 35    
9.  马培蓓. 多导弹攻击时间和攻击角度协同制导研究综述. 飞航导弹,2018(6):59-63 CSCD被引 2    
10.  Cho D. Nonsingular sliding mode gui-dance for impact time control. Journal of Guidance, Control, and Dynamics,2016,39(1):61-68 CSCD被引 49    
11.  Liu X D. Adaptive sliding mode guidance with impact time and angle constraints. IEEE Access,2020,8:26926-26932 CSCD被引 3    
12.  Zhou J L. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles. Journal of Guidance, Control, and Dynamics,2016,39(10):2439-2447 CSCD被引 42    
13.  Sinha A. Super-twisting control based impact time constrained guidance. AIAA SciTech 2020 Forum,2020 CSCD被引 1    
14.  李文. 速度时变情况下多飞行器时间协同制导方法研究. 兵工学报,2020,41(6):1096-1110 CSCD被引 12    
15.  马卫华. “会学习”运载火箭的制导控制技术. 航天控制,2020,38(2):3-8 CSCD被引 12    
16.  黄旭星. 人工智能在航天器制导与控制中的应用综述. 航空学报,2021,42(4):524201 CSCD被引 13    
17.  Cottrell R G. Minimizing interceptor size using neural networks for terminal guidance law synthesis. Journal of Guidance, Control, and Dynamics,1996,19(3):557-562 CSCD被引 6    
18.  Huang L M. Deep learning midcourse guidance for interceptor missile. Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference,2019:1129-1134 CSCD被引 1    
19.  Gaudet B. Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerospace Science and Technology,2020,99:105746 CSCD被引 27    
20.  南英. 基于深度强化学习的弹道导弹中段突防控制. 指挥信息系统与技术,2020,11(4):1-9,27 CSCD被引 7    
引证文献 18

1 邱潇颀 拦截大气层内机动目标的深度强化学习制导律 宇航学报,2022,43(5):685-695
CSCD被引 11

2 董希旺 多飞行器攻击时间一致性协同制导进展综述与展望 北京航空航天大学学报,2022,48(9):1836-1844
CSCD被引 9

显示所有18篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号