Ti_2AlNb合金孔挤压加工残余应力仿真与疲劳实验
Simulation of residual stress and fatigue test in hole extrusion process for Ti_2AlNb alloy
查看参考文献22篇
文摘
|
为研究孔挤压强化工艺对Ti_2AlNb合金疲劳性能的影响,建立孔强化工艺残余应力仿真分析模型,讨论了孔挤压工艺后表层残余应力分布规律和强化机理;开展孔挤压与未挤压试样的高温低周疲劳性能测试,并对比两种试样的疲劳断口显微组织特征。结果表明:孔挤压工艺能够在小孔周围产生较强的残余压应力层,该残余压应力层有效延迟和抑制了疲劳裂纹的萌生和扩展,显著提升了Ti_2AlNb试件的高温低周疲劳性能。 |
其他语种文摘
|
In order to study the effect of hole extrusion strengthening process on the fatigue performance of Ti_2AlNb alloy, a simulation analysis model of residual stress of hole strengthening process was established. The distribution law of surface residual stress and strengthening mechanism after hole extrusion process were discussed. In this work, the hole extrusion experiments were carried out. The high temperature and low cycle fatigue performance of the compressed and un-compressed specimens were tested respectively. Meanwhile, the microstructure characteristics of the fatigue fracture of the two specimens were compared. The results show that the hole extrusion process can produce a strong residual compressive stress layer around the small hole, which effectively delays and inhibits the initiation and propagation of fatigue cracks, and significantly improves the high temperature and low cycle fatigue performance of Ti_2AlNb specimens. |
来源
|
航空材料学报
,2021,41(4):66-74 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000105
|
关键词
|
Ti_2AlNb
;
孔挤压强化
;
疲劳性能
;
有限元分析
;
残余应力
|
地址
|
1.
中国航发北京航空材料研究院应用评价中心, 北京, 100095
2.
中国航发北京航空材料研究院表面工程研究所, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国防科工局稳定支持重点项目
;
工信部两机基础项目
|
文献收藏号
|
CSCD:7041418
|
参考文献 共
22
共2页
|
1.
周毅. β/B2锻造Ti-22Al-23Nb-2(Mo,Zr)合金的组织演化与综合力学性能.
航空材料学报,2020,40(4):25-35
|
CSCD被引
6
次
|
|
|
|
2.
徐磊. 粉末冶金Ti2AlNb合金研究进展.
航空制造技术,2019,62(22):14-20
|
CSCD被引
5
次
|
|
|
|
3.
张建伟. Ti3Al和Ti2AlNb基合金的研究与应用.
中国有色金属学报,2010,20(B10):336-341
|
CSCD被引
43
次
|
|
|
|
4.
Zhang Y. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy.
Journal of Material Science & Technology,2020,44:140-147
|
CSCD被引
2
次
|
|
|
|
5.
Yamaquchui K. Low-cycle fatigue properties of TiAl compounds.
Tetsu-to-Hagane,2009,78(1):134-140
|
CSCD被引
1
次
|
|
|
|
6.
Krumi T. Microstructure degradation in high temperature fatigue of TiAl alloy.
International Journal of Fatigue,2014,65:28-32
|
CSCD被引
11
次
|
|
|
|
7.
靳盛哲. 镍基高温合金GH4169孔挤压强化数值模拟方法及参数影响.
航空动力学报,2020,35(1):30-40
|
CSCD被引
7
次
|
|
|
|
8.
王燕礼. 孔挤压强化技术研究进展与展望.
航空学报,2018,39(2):1-17
|
CSCD被引
4
次
|
|
|
|
9.
Fu Y C. Cold expansion technology of connection holes in aircraft structures: A review and prospect.
Chinese Journal of Aeronautics,2015,28(4):961-973
|
CSCD被引
20
次
|
|
|
|
10.
Chakherlou T N. A novel method of cold expansion which creates near-uniform compressive tangential residual stress around a fastener hole.
Fatigue & Fracture of Engineering Materials & Structures,2010,27(5):343-351
|
CSCD被引
9
次
|
|
|
|
11.
Liu Y. Finite element method and experimental investigation on the residual stress fields and fatigue performance of cold expansion hole.
Materials & Design,2010,31(3):1208-1215
|
CSCD被引
2
次
|
|
|
|
12.
Zheng G. A dynamic cold expansion method to improve fatigue performance of holed structures based on electromagnetic load.
International Journal of Fatigue,2021,148:106253
|
CSCD被引
6
次
|
|
|
|
13.
王连庆. 孔挤压强化对2024铝合金疲劳性能的影响.
航空材料学报,2020,40(6):45-51
|
CSCD被引
6
次
|
|
|
|
14.
王欣. 冷挤压GH4169合金孔结构疲劳性能与断口分析.
材料工程,2020,48(6):156-162
|
CSCD被引
4
次
|
|
|
|
15.
姜廷宇. TB6钛合金孔二次挤压残余应力及疲劳寿命仿真研究.
航空制造技术,2021,64(9):77-84
|
CSCD被引
5
次
|
|
|
|
16.
刘晓龙. 孔挤压强化残余应力场的三维有限元模拟和实验研究.
航空材料学报,2011,31(2):24-27
|
CSCD被引
16
次
|
|
|
|
17.
Zhao C. Experimental and numerical investigation of residual stresses around cold extrusion hole of ultrahigh strength steel.
Materials & Design,2013,50:78-84
|
CSCD被引
2
次
|
|
|
|
18.
杨广勇. 二次孔挤压强化对Ti1023钛合金孔疲劳性能影响.
航空材料学报,2016,36(6):68-73
|
CSCD被引
7
次
|
|
|
|
19.
Yasniy P. Lifetime of aircraft alloy plates with cold expanded holes.
International Journal of Fatigue,2017,104:112-119
|
CSCD被引
5
次
|
|
|
|
20.
Poussard C. Analytical and finite element predictions of residual stresses in cold worked fastener holes.
The Journal of Strain Analysis for Engineering Design,1995,30(4):291-304
|
CSCD被引
1
次
|
|
|
|
|