钛合金切削加工表面完整性形成机制研究进展
Research progress on formation mechanism of surface integrity in titanium alloy machining
查看参考文献99篇
文摘
|
钛合金作为航空发动机关键构件的主要应用材料,具有质量轻、强度高、耐腐蚀、抗疲劳等优异性能。然而其弹性模量小、热导率低、化学亲和力强,切削加工过程中会产生较高的切削力和切削温度,不同的热力耦合作用会使工件表层组织、成分、力学性能发生变化,形成不同的表面完整性状态特性。本文基于表面完整性形成机制分析,阐述了工艺参数、刀具材料和性能、润滑方式对切削力、切削温度以及表面粗糙度与形貌、残余应力分布、显微硬度分布、微观组织的影响规律,分析了不同切削力、切削温度状态下表面完整性的形成机制。通过总结当前研究进展,指出现有研究主要集中于现象和规律的描述,鲜见基于加工界面热力耦合作用分析表面完整性形成机理方面的研究,对表面完整性的定性和定量表征体系不完善。因此,钛合金切削加工技术未来的研究对象需从试块提升为构件,考虑构件实际加工过程中加工轨迹时变性引起加工界面接触状态的变化对表面完整性的影响;完成表层塑性变形和晶粒特性的定量评价,实现表面完整性梯度分布的准确预测;以疲劳性能为目标,反推并设计满足构件服役性能的表面完整性特征分布,确定出满足要求的加工条件,实现满足服役性能要求的表面完整性加工。 |
其他语种文摘
|
Titanium alloy is the main application material for the key components of aero-engine due to its excellent properties, such as light weight, high strength, high temperature resistance, and fatigue resistance. Because of its small elastic modulus, low thermal conductivity, and strong chemical affinity, it produces greater cutting force and higher cutting temperature in the machining process. Different thermal mechanical coupling effects can change the surface structure, composition, and mechanical properties of the material, resulting in different surface integrity state characteristics. This paper expounds the effects of process parameters, tool materials and properties, and lubrication methods on cutting force, cutting temperature, surface roughness and morphology, residual stress, microhardness, and microstructure based on the formation mechanism of surface integrity. It is pointed out that the existing researches mainly focus on the description of phenomena and laws. The research on the formation mechanism of surface integrity based on the thermal-mechanical coupling on the processing interface is lack, and the qualitative characterization system of surface integrity is not perfect. Therefore, the object of titanium alloy machining needs to be upgraded from test block to component, and the influence of the change of contact state of the processing interface caused by the time-varying machining trajectory on the surface integrity should be considered. Moreover, the quantitative evaluation of plastic deformation and grain characteristics is completed to accurately predict the gradient distribution of surface integrity. Taking fatigue performance as the goal, the surface integrity distribution meeting the service performance of components is deduced and designed, and then the processing conditions meeting the requirements are determined to realize the surface integrity processing. |
来源
|
航空材料学报
,2021,41(4):1-16 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000102
|
关键词
|
钛合金
;
切削力
;
切削温度
;
残余应力
;
显微硬度
;
微观组织
|
地址
|
1.
西北工业大学, 航空发动机高性能制造工业和信息化部重点实验室, 西安, 710072
2.
西北工业大学, 航空发动机先进制造技术教育部工程研究中心, 西安, 710072
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
陕西省重点研发计划
;
国家重大科技专项
;
陕西省自然科学基础研究计划
|
文献收藏号
|
CSCD:7041414
|
参考文献 共
99
共5页
|
1.
Javidi A. The effect of machining on the surface integrity and fatigue life.
International Journal of Fatigue,2008,30:2050-2055
|
CSCD被引
18
次
|
|
|
|
2.
谭靓.
抗疲劳表面变质层的多工艺复合控制方法,2018
|
CSCD被引
3
次
|
|
|
|
3.
王尚志. 航空零件加工的表面完整性.
航空制造技术,1993(6):22-24
|
CSCD被引
1
次
|
|
|
|
4.
Banerjee D. Perspectives on titanium science and technology.
Acta Materialia,2013,61(3):844-879
|
CSCD被引
340
次
|
|
|
|
5.
Budak E. Analytical models for high performance milling. Part I:cutting forces,structural deformations and tolerance integrity.
International Journal of Machine Tools & Manufacture,2006,46(12/13):1478-1488
|
CSCD被引
25
次
|
|
|
|
6.
Wan M. New Cutting Force Modeling Approach for Flat End Mill.
Chinese Journal of Aeronautics,2007,20(3):282-288
|
CSCD被引
5
次
|
|
|
|
7.
Wang D. A method for the prediction of cutting force for 5-axis ball-end milling of workpieces with curved surfaces.
International Journal of Advanced Manufacturing Technology,2020,107(5):2023-2039
|
CSCD被引
1
次
|
|
|
|
8.
Oxley P L B.
The mechanics of machining:an analytical approach to assessing machinability,1989
|
CSCD被引
2
次
|
|
|
|
9.
Hendriko H. Implementation of analytical boundary simulation method for cutting force prediction model in five-axis milling.
Machining Science & Technology,2017(1):1-17
|
CSCD被引
3
次
|
|
|
|
10.
Armarego E. Computer based modelling of popular machining operations for force and power prediction.
CIRP Annals-Manufacturing Technology,1985,34(1):65-69
|
CSCD被引
13
次
|
|
|
|
11.
吕杨.
航空用钛合金切削力的试验研究与仿真,2013
|
CSCD被引
1
次
|
|
|
|
12.
Ali M H. Simulation machining of titanium alloy( Ti-6Al-4V) based on the finite element modeling.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,2014,36(2):315-324
|
CSCD被引
1
次
|
|
|
|
13.
王刚. 粒子群优化模糊系统的铣削力建模方法.
机械工程学报,2011(13):123-130
|
CSCD被引
5
次
|
|
|
|
14.
Shi Q. Experimental study in high speed milling of titanium alloy TC21.
International Journal of Advanced Manufacturing Technology,2013,64(1/2/3/4):49-54
|
CSCD被引
8
次
|
|
|
|
15.
Niu Q. Evaluation of the performance of coated carbide tools in face milling TC6 alloy under dry condition.
International Journal of Advanced Manufacturing Technology,2013,64(5/6/7/8):623-631
|
CSCD被引
6
次
|
|
|
|
16.
Zhang C M. A study on the influence of milling parameters on the properties of TC18 titanium alloy.
Science of Advanced Materials,2020,12(5):707-714
|
CSCD被引
1
次
|
|
|
|
17.
王永鑫. TC18钛合金车削加工的切削力和表面粗糙度.
机械工程材料,2019,43(7):69-73
|
CSCD被引
2
次
|
|
|
|
18.
Wang F Z. Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy.
Machining Science and Technology,2014,18(3):448-463
|
CSCD被引
5
次
|
|
|
|
19.
Wu H B. Effects of cutting conditions on the milling process of titanium alloy Ti6Al4V.
International Journal of Advanced Manufacturing Technology,2015,77(9/10/11/12):2235-2240
|
CSCD被引
4
次
|
|
|
|
20.
Krishnaraj V S. A study on high speed end milling of titanium alloy.
Procedia Engineering,2014,97(97):251-257
|
CSCD被引
5
次
|
|
|
|
|