赤泥中的稀土资源:分布、赋存和提取
REE resources in red mud: distribution, occurrence and extraction
查看参考文献94篇
文摘
|
铝土矿中通常含有一定量的稀土元素(REE),氧化铝生产过程导致矿石中几乎所有的REE都富集到赤泥中,其中喀斯特型铝土矿所产生赤泥中的REE含量相对更高,是潜在的REE二次资源,综合利用赤泥中的REE已成为研究热点之一。已有的研究表明,REE分布于赤泥的各个矿物相,包括铝土矿保留下来的矿物相或新形成的矿物相。类质同象可能是其中REE的主要赋存形式,含Fe或Ti的矿物是其主要载体矿物,存在少量REE独立矿物,硅酸盐矿物相或新形成的矿物相也是REE潜在载体矿物。目前,赤泥中REE回收利用多处于实验室研究阶段,包括直接酸浸、焙烧浸出和生物浸出等方法。对比结果表明,直接酸浸和焙烧浸出是有效的赤泥回收REE的方法,但难点是如何增加浸出的选择性,及简化工艺流程。此外,生物浸出的过程更绿色环保,可能成为未来最具前景的回收REE的方法。在回收过程中,设计和发展多元素回收工艺,将Fe、Al、Na、Ti和REE等元素均纳入提取回收流程,并将有用金属回收后所产生的残渣作为制备建筑装饰、催化支撑材料、吸附剂等的原材料,将是赤泥综合利用未来发展方向。 |
其他语种文摘
|
Bauxite usually contains a certain amount of rare earth elements (REE). The production process of alumina leads to the enrichment of almost all REE in the ore into red mud. The content of REE in red mud produced from karst bauxite is relatively high, and is a potential secondary REE resource. The comprehensive utilization of REE in red mud has become one of the research hotspots. Previous studies have shown that the REE is distributed in various mineral phases of red mud, including retained or newly formed mineral phases in bauxite. Isomorphism may be the main occurrence state of REE. Minerals containing Fe or Ti are the main REE carrier minerals. There is only a small amount of REE independent minerals. Silicate or newly formed mineral phases are also the potential REE carrier minerals. At present, the recovery and utilization of REE from red mud are mostly studied in the laboratory research stage, with methods including direct acid leaching, roasting and leaching, and bioleaching. The comparison results show that the direct acid leaching and the roasting and leaching are effective methods for the REE recovery from red mud, but the difficulty is how to increase the selectivity of leaching and to simplify the technological process. In addition, the bioleaching is more environmental friendly and may become the most promising method for recovering REE from red mud in the future. In the recovery process, the multi-element recovery process was designed and developed to extract and recover elements such as Fe, Al, Na, Ti and REE. The future development direction for comprehensive utilization of red mud could include that the residual slag produced by the extraction and recovery of useful metals from red mud will be used as raw materials for the preparation of building decoration materials, catalytic support materials, adsorbents and so on. |
来源
|
矿物学报
,2021,41(4/5):578-592 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2021.41.110
|
关键词
|
赤泥
;
稀土元素
;
赋存形式
;
浸出
;
萃取
|
地址
|
1.
贵州大学资源与环境工程学院, 贵州, 贵阳, 550025
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
3.
贵州大学矿业学院, 贵州, 贵阳, 550025
4.
攀枝花学院, 四川, 攀枝花, 617000
5.
贵州省煤田地质局, 贵州, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
矿业工程 |
基金
|
矿床地球化学国家重点实验室领域前沿项目
;
贵州省科技支撑项目
|
文献收藏号
|
CSCD:7039717
|
参考文献 共
94
共5页
|
1.
王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向.
地质学报,2019,93(6):1189-1209
|
CSCD被引
154
次
|
|
|
|
2.
翟明国. 战略性关键金属矿产资源:现状与问题.
中国科学基金,2019,33(2):106-111
|
CSCD被引
263
次
|
|
|
|
3.
陈毓川. 从三稀资源调查扩大到关键矿产调查是战略性新兴产业发展的必然需要---推荐阅读《地质学报》“关键矿产”专辑.
地质论评,2019,65(4):915-916
|
CSCD被引
8
次
|
|
|
|
4.
Das B. A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud.
Renewable Energy,2019,143:1791-1811
|
CSCD被引
5
次
|
|
|
|
5.
The International Aluminium Institute.
Total for Sept 2020: 10, 717 thousand metric tonnes of alumina (total),2020
|
CSCD被引
1
次
|
|
|
|
6.
国家统计局.
工业固体废物排放和处理,2009
|
CSCD被引
1
次
|
|
|
|
7.
Vijaya H M. Assessment of red mud as a construction material.
Indian J Sci Res,2018,17:473-478
|
CSCD被引
1
次
|
|
|
|
8.
Sutar H. Progress of red mud utilization: an overview.
Am Chem,2014,4(3):255-279
|
CSCD被引
9
次
|
|
|
|
9.
Hajjaji W. An overview of using solid wastes for pigment industry.
Journal of the European Ceramic Society,2012,32(4):753-764
|
CSCD被引
2
次
|
|
|
|
10.
刘松辉. 赤泥安全堆存和综合利用研究进展.
硅酸盐通报,2015,34(8):2194-2200
|
CSCD被引
8
次
|
|
|
|
11.
Lima M S S. Red mud application in construction industry: review of benefits and possibilities.
IOP Conference Series: Materials Science and Engineering,2017:1-10
|
CSCD被引
1
次
|
|
|
|
12.
Zhu X B. An active dealkalization of red mud with roasting and water leaching.
Journal of Hazardous Materials,2015,286:85-91
|
CSCD被引
38
次
|
|
|
|
13.
Liu Y J. Hidden values in bauxite residue (red mud): recovery of metals.
Waste Management,2014,34(12):2662-2673
|
CSCD被引
28
次
|
|
|
|
14.
Binnemans K. Recycling of rare earths: a critical review.
Journal of Cleaner Production,2013,51:1-22
|
CSCD被引
111
次
|
|
|
|
15.
Gu H N. Radiological restrictions of using red mud as building material additive.
Waste Management & Research,2012,30(9):961-965
|
CSCD被引
13
次
|
|
|
|
16.
International Aluminium Institute.
Opportunities for use of bauxite residue in supplementary cementitious materials
|
CSCD被引
1
次
|
|
|
|
17.
Zhang N. Recovery of scandium from bauxite residue—red mud: a review.
Rare Metals,2016,35(12):887-900
|
CSCD被引
14
次
|
|
|
|
18.
Liu W C. Environmental assessment, management and utilization of red mud in China.
Journal of Cleaner Production,2014,84:606-610
|
CSCD被引
50
次
|
|
|
|
19.
Borra C R. Leaching of rare earths from bauxite residue (red mud).
Minerals Engineering,2015,76:20-27
|
CSCD被引
25
次
|
|
|
|
20.
Vind J. Rare earth element phases in bauxite residue.
Minerals,2018,8(2):1-32
|
CSCD被引
2
次
|
|
|
|
|