铝土矿(岩)中伴生的锂资源
The associated lithium resource in bauxite (bauxite-bearing rock)
查看参考文献84篇
文摘
|
我国铝土矿资源丰富,铝土矿在成矿过程中通常会富集锂(Li)等对现代工业至关重要的关键金属元素,成矿潜力巨大。铝土矿(岩)中的Li主要富集在矿体顶底板的铝土岩或黏土岩以及低品质铝土矿矿石中,而这些正是铝土矿开采过程中产生的无用的尾矿,对其中伴生的Li加以利用,不仅能进一步提高铝土矿矿山的价值,还能改善矿山环境污染及缓解我国Li资源短缺的状况。目前针对铝土矿(岩)中伴生Li的赋存状态的研究还比较薄弱,争议较大。已有的研究指出Li在铝土矿(岩)中可能以离子吸附的形式赋存在黏土矿物和铁锰氧化物表面或以类质同象的形式替代镁铁硅酸岩矿物、黏土矿物及铁锰矿物晶格中的Mg~(2+)和Fe~(2+)。而铝土矿(岩)中是否存在独立矿物,如类似粘土岩中的锂绿泥石,还缺少实际证据。铝土矿(岩)中Li的富集规律与铝土矿的成矿过程关系密切,物源、沉积古地理、气候、沉积环境和矿物的分化及新矿物的形成都可能是控制Li活化、迁移和富集的主要因素,但目前相关研究还十分薄弱。铝土矿(岩)伴生的Li有可能成为我国锂矿资源开发利用的另一个重要发展方向,开展相关研究,不仅可以为铝土矿中伴生Li的综合利用和评价提供依据,而且也将拓宽我国Li矿资源开发利用思路。 |
其他语种文摘
|
China is rich in bauxite ores in which Li and other metals critical to the modern industry are commonly enriched. Moreover, it has been widely found that Li is highly enriched in bauxite-bearing rock series. Therefore, there is great potential of Li resource in bauxite (bauxite-bearing rock). In addition, Li is mainly concentrated in bauxite-bearing rocks or claystone at the roof and floor of bauxite orebodies and low quality bauxite ores, which are general useless tailings produced in the process of mining. Therefore, the utilization of associated Li resources in the bauxite deposit can not only raise values of bauxite ores (bauxite-bearing rocks), but also can reduce the environmental pollution of mines and alleviate the shortage of lithium resources in China. The occurrence state of associated Li in bauxite (bauxite-bearing rock) is still controversial due to poor previous studies. It has been proposed that Li could be adsorbed on the surfaces of clay minerals and Fe-Mn oxides in bauxite ore (bauxite-bearing rock) by ion adsorption, or could substitute Mg~(2+) and Fe~(2+) in the lattice of mafic silicate minerals, clay minerals and iron manganese minerals in the form of isomorphism. In addition, it is not known whether there are independent Li minerals, such as cookeite found in claystone, in bauxite (bauxite-bearing rock) due to the lack of actual evidence. The enrichment regularity of Li in bauxite (bauxite-bearing rock) is closely related to the mineralization process of bauxite. Provenance, sedimentary paleogeography, palaeoclimate, sedimentary environment, mineral differentiation, and the formation of new minerals could be the main factors controlling the activation, migration, and enrichment of Li. However, those relevant researches are extremly weak at present. The associated Li in bauxite (bauxite-bearing rock) may become another important direction of development and utilization of lithium resources in China. Those relevant researches will not only provide the basis for the comprehensive utilization and evaluation of the associated Li resource in bauxite (bauxite-bearing rock), but also expand the way of thinking on the development and utilization of Li resource in China. |
来源
|
矿物学报
,2021,41(4/5):382-390 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2021.41.090
|
关键词
|
锂
;
铝土矿
;
赋存状态
;
富集规律
;
研究进展
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
矿床地球化学国家重点实验室领域前沿项目
;
贵州省科技支撑项目
|
文献收藏号
|
CSCD:7039700
|
参考文献 共
84
共5页
|
1.
陈骏. 关键金属超常富集成矿和高效利用.
科技导报,2019,37(24):1
|
CSCD被引
37
次
|
|
|
|
2.
毛景文. 关键矿产-国际动向与思考.
矿床地质,2019,38(4):689-698
|
CSCD被引
94
次
|
|
|
|
3.
Gruber P W. Global lithium availability.
Journal of Industrial Ecology,2011,15(5):760-775
|
CSCD被引
40
次
|
|
|
|
4.
王登红. 中国三稀矿产资源战略调查研究进展综述.
中国地质,2013,40(2):361-370
|
CSCD被引
115
次
|
|
|
|
5.
齐帅军. 中国锂矿资源分布和潜力分析.
矿床地质,2014,33(s1):809-810
|
CSCD被引
4
次
|
|
|
|
6.
李建康. 中国锂矿成矿规律概要.
地质学报,2014,88(12):2208-2215
|
CSCD被引
2
次
|
|
|
|
7.
王秋舒. 全球锂矿资源勘查开发及供需形势分析.
中国矿业,2016,25(3):11-15
|
CSCD被引
15
次
|
|
|
|
8.
李康. 中国锂资源开发利用现状及对策建议.
资源与产业,2016,18(1):82-86
|
CSCD被引
19
次
|
|
|
|
9.
王瑞江.
稀有稀土稀散矿产资源及其开发利用,2015:1-37
|
CSCD被引
18
次
|
|
|
|
10.
黄智龙.
黔北铝土矿成矿理论及预测,2014:1-245
|
CSCD被引
2
次
|
|
|
|
11.
Calagari A A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan. Iran.
J. Geochem. Explor,2007,94(1):1-18
|
CSCD被引
47
次
|
|
|
|
12.
Vidal O. Metals for a low-carbon society.
Nat Geosci,2013,6(11):894-896
|
CSCD被引
8
次
|
|
|
|
13.
Mongelli G. Geochemistry of the apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography.
Ore Geol Rev,2016,77:246-259
|
CSCD被引
17
次
|
|
|
|
14.
温汉捷. 碳酸盐黏土型锂资源的发现及意义.
科学通报,2020,65(1):53-59
|
CSCD被引
65
次
|
|
|
|
15.
王登红. 贵州大竹园铝土矿中钨和锂的发现与综合评价.
中国科学:地球科学,2013,43(1):44-51
|
CSCD被引
48
次
|
|
|
|
16.
Ling K Y. Host minerals of Li-Ga-V-rare earth elements in Carboniferous karstic bauxites in southwest China.
Ore Geol Rev,2020,119:103325
|
CSCD被引
16
次
|
|
|
|
17.
Abedini A. Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: Implications for parental affinity and factors controlling the distribution of elements.
J Geochem Explor,2018,200:249-265
|
CSCD被引
3
次
|
|
|
|
18.
Long Y Z. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the XiuwenQingzhen area, Guizhou. China.
Ore Geol Rev,2017,91:404-418
|
CSCD被引
13
次
|
|
|
|
19.
Khosravi M. The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental afnities.
J Afr Earth Sci,2017,129:960-972
|
CSCD被引
8
次
|
|
|
|
20.
He M Y. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes.
Ore Geol Rev,2020,117:103277
|
CSCD被引
28
次
|
|
|
|
|