钛合金在骨科植入领域的研究进展
Research progress in titanium alloy in the field of orthopaedic implants
查看参考文献89篇
文摘
|
钛合金具有良好的生物相容性,同时相比传统植入物金属材料有较低的弹性模量,在生物环境下具有良好的抗腐蚀性能,这些优异的性能使钛合金作为医用植入物材料备受青睐。钛及钛合金作为医用植入物材料在临床中得到广泛应用。在不同的临床应用过程中,植入物材料常因金属的降解、与骨的生长融合、抗菌等因素,而对材料本身的性能有着不同的要求。因此,制备具有优异综合性能的钛合金材料以满足临床需求是科研工作者当前面临的重要问题。本文系统介绍了医用钛合金材料的结构、性能特点及目前在骨科应用方向的研究现状,在未来研究中,将通过改变元素组成、增加表面改性、优化生产工艺等方式,使钛合金材料能够以优异的综合性能更好地服务于人类。 |
其他语种文摘
|
Owing to the excellent biocompatibility and corrosion resistance of titanium and its alloys in the biological environments,they are one of the best materials in the medical implant applications. Moreover,it has a lower elastic modulus (comparable to bone)than traditional metal implant materials which is an influential property due to the stress-shielding effect.There are some requirements for implant materials according to their clinical use and the periphery tissues.Hence, some factors should be considered,such as metal degradation,toxicity issues,surface characteristics, biocompatibility,and fusion with bone.Considering the above-mentioned information,titanium material design with superior performance to meet the essential clinical needs is an important challenge and attracts much attention from the academicians in the biomaterial field.This paper discusses the structural and performance characteristics of medical titanium alloys and the current research status in the direction of orthopedic applications.Furthermore,in future research,through changing the elemental composition,increasing the surface modification,and optimizing the production process, titanium alloy materials could have the excellent comprehensive performance to serve human beings better. |
来源
|
材料工程
,2021,49(8):11-25 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000380
|
关键词
|
钛合金
;
骨科
;
骨科植入物
;
材料性能
|
地址
|
1.
右江民族医学院附属医院, 广西, 百色, 533000
2.
上海交通大学材料科学与工程学院, 金属基复合材料国家重点实验室, 上海, 200240
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
外科学 |
基金
|
右江民族医学院附属医院高层次人才科研项目
|
文献收藏号
|
CSCD:7034903
|
参考文献 共
89
共5页
|
1.
Park J B.
Biomaterials:principles and applications,2002
|
CSCD被引
1
次
|
|
|
|
2.
Kargozar S. Chemistry of biomaterials:future prospects.
Current Opinion in Biomedical Engineering,2019,10:181-190
|
CSCD被引
1
次
|
|
|
|
3.
Frost H M. A 2003update of bone physiology and Wolff’s Law for clinicians.
The Angle Orthodontist,2004,74(1):3-15
|
CSCD被引
45
次
|
|
|
|
4.
Costa B C. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants:in vitro cytotoxicity and speciation evaluation.
Materials Science and Engineering:C,2019,96:730-739
|
CSCD被引
10
次
|
|
|
|
5.
刘理. 钒:一种具有非典型生物学意义的元素.
国外医学(医学地理分册),2006(3):114-116
|
CSCD被引
1
次
|
|
|
|
6.
Zhang Y. The researches on titanium and titanium alloy in dental use.
Journal of Biomedical Engineering,2000,17(2):206-208
|
CSCD被引
1
次
|
|
|
|
7.
樊晓霞. 不同来源天然骨磷灰石的材料学性能比较研究.
生物医学工程学杂志,2014,31(2):352-356
|
CSCD被引
1
次
|
|
|
|
8.
Perez D A G. Severe plastic deformation and different surface treatments on the biocompatible Ti_(13)Nb_(13)Zr and Ti_(35)Nb_7Zr_5Ta alloys:microstructural and phase evolutions,mechanical properties,and bioactivity analysis.
Journal of Alloys and Compounds,2020,812:152116
|
CSCD被引
1
次
|
|
|
|
9.
Biesiekierski A. Impact of ruthenium on mechanical properties,biological response and thermal processing ofβ-type Ti-Nb-Ru alloys.
Acta Biomaterialia,2017,48:461-467
|
CSCD被引
3
次
|
|
|
|
10.
Li X. Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy.
Journal of Alloys and Compounds,2019,772:968-977
|
CSCD被引
4
次
|
|
|
|
11.
Karre R. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
Materials Science and Engineering:C,2019,94:619-627
|
CSCD被引
5
次
|
|
|
|
12.
Jawed S F. Mechanical characterization and deformation behavior ofβ-stabilized Ti-Nb-Sn-Cr alloys.
Journal of Alloys and Compounds,2019,792:684-693
|
CSCD被引
7
次
|
|
|
|
13.
Vieira N A R. Influence of thermo-mechanical processing on structure and mechanical properties of a new metastableβTi-29Nb-2Mo-6Zr alloy with low Young’s modulus.
Journal of Alloys and Compounds,2020,820:153078
|
CSCD被引
3
次
|
|
|
|
14.
Ozan S. Microstructural evolution and its influence on the mechanical properties of a thermomechanically processedβTi-32Zr-30Nb alloy.
Materials Science and Engineering: A,2018,719:112-123
|
CSCD被引
2
次
|
|
|
|
15.
Bahl S. Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastableβTi-Nb-Sn alloy for orthopedic applications.
Materials & Design,2017,126:226-237
|
CSCD被引
2
次
|
|
|
|
16.
Chen J. Effects of different processing conditions on super-elasticity and low modulus properties of metastableβ-type Ti-35Nb-2Ta-3Zr alloy.
Vacuum,2017,146:164-169
|
CSCD被引
6
次
|
|
|
|
17.
Zhang T. Effect of laser remelting on microstructural evolution and mechanical properties of Ti-35Nb-2Ta-3Zr alloy.
Materials Letters,2019,253:310-313
|
CSCD被引
4
次
|
|
|
|
18.
Kang N. On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure.
Additive Manufacturing,2020,31:100911
|
CSCD被引
5
次
|
|
|
|
19.
Correa D R N. Microstructure and selected mechanical properties of aged Ti-15Zrbased alloys for biomedical applications.
Materials Science and Engineering:C,2018,91:762-771
|
CSCD被引
1
次
|
|
|
|
20.
Kuroda P A B. Thermomechanical treatments influence on the phase composition, microstructure,and selected mechanical properties of Ti-20Zr-Mo alloys system for biomedical applications.
Journal of Alloys and Compounds,2020,812:152108
|
CSCD被引
4
次
|
|
|
|
|