硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应
Coupled Transformation of Sulfur and Cadmium on Goethite Induced by Sulfate-reducing Bacterium
查看参考文献29篇
文摘
|
土壤重金属镉(Cd)污染问题日益严重,已对农产品及人类健康造成严重威胁,研究Cd污染土壤修复技术具有重要环境意义。微生物修复技术,如硫酸盐还原菌(sulfate reducing bacteria,SRB)介导下重金属的固定技术,是土壤Cd污染控制修复的主要途径。而土壤中硫和铁均具有较高的地球化学活性,与重金属的脱毒转化密切相关。然而,目前关于铁物种、铁氧化物和SRB共存的情况下,重金属还原固定行为还缺乏深入的研究。文章通过构建“SRB-针铁矿-重金属”的交互反应体系,研究体系中硫的转化、铁还原、重金属镉的环境行为以及矿物物相变化,并对其作用机制进行初步探讨。结果表明,纯化学(针铁矿+FeCl2+CdCl2)培养条件下,体系并未发生明显的铁还原和硫酸盐还原过程,90%以上的重金属Cd以游离态形式存在;在SRB作用下(针铁矿+SRB),体系中硫酸盐和针铁矿均被迅速还原,在反应30 d时,66.34%硫酸盐被还原,同时生成2.17 mmol·L~(-1) Fe(II);添加CdCl2(针铁矿+CdCl2+SRB),抑制了硫酸盐还原和铁还原过程,反应30 d后,体系中62.21%硫酸盐被还原,约50.65%的游离态的Cd(II)可被吸附固定到矿物中。然而,外加FeCl2可加速SRB对硫酸盐和针铁矿的还原,同时也可进一步促进游离态的Cd(II)固定脱毒,其去除率可达66.89%(针铁矿+FeCl2+CdCl2+SRB)。矿物形貌和结构的表征显示,在SRB介导硫酸盐还原过程中,矿物的物相仍以针铁矿为主,另有CdS固体生成。以上研究结果可为深入理解土壤中重金属的环境行为,研发高效的重金属脱毒技术提供科学依据。 |
其他语种文摘
|
Soil heavy metal pollution has becoming serious and widespread, and poses a threat to agriculture and human health. Bioremediation for heavy metal by sulfate reducing bacteria (SRB) has been proposed as an effective method to remove heavy metal in contaminated soils. Sulfur and iron are the important elements in soils with high activities, and play important roles in the detoxification of heavy metals. However, the biogeochemical mechanism of cadmium removal in the system with iron, iron oxide, and SRB is still not clear. In this study, the interaction of sulfate-reducing bacteria (SRB), goethite and heavy metal were investigated, along with the behavior of sulfate reduction, iron reduction, cadmium transformation, and mineral transformation. The results showed that there was no significant sulfate and iron reduction, and cadmium transformation in the chemical control treatment, 90% cadmium in the system was activity as aqueous state. About 66.34% of sulfate was reduced and 2.17 mmol·L~(-1) Fe(II) was produced in the treatment with SRB and goethite. However, the reduction of iron and sulfate was inhibited by the addition of CdCl2. Only 62.21% of sulfate was reduced and 50.65% of cadmium was incorporated in the goethite in the treatment with SRB, goethite and CdCl2, after incubation 30 days. The addition of FeCl2 could further enhance the reduction of iron and sulfate. The addition of FeCl2 could enhance the rate of sulfate reduction by stimulating the activity of SRB, which could further enhance the removal of cadmium. The SEM, XRD and XPS results all indicated that the phase of mineral was still goethite during microbial sulfate reduction, and CdS was found in the mineral. These results are also helpful in understanding the behaviors of heavy metal in soil and providing scientific basis for controlling soil environmental quality. |
来源
|
生态环境学报
,2021,30(5):1069-1075 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2021.05.020
|
关键词
|
硫酸盐还原菌
;
铁氧化物
;
镉
;
硫
;
固定脱毒
;
土壤修复
|
地址
|
1.
广东省科学院生态环境与土壤研究所, 华南土壤污染控制与修复国家地方联合工程研究中心;;广东省农业环境综合治理重点实验室, 广东, 广州, 510650
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550001
3.
广东工业大学环境科学与工程学院, 广东, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论;环境污染及其防治 |
基金
|
广东省自然科学基金
;
广东省科学院实施创新驱动发展能力建设专项
;
广东省农业科技创新及推广项目
|
文献收藏号
|
CSCD:7025343
|
参考文献 共
29
共2页
|
1.
Barton L L. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
Advances in Applied Microbiology,2009,68:41-98
|
CSCD被引
24
次
|
|
|
|
2.
De Mora A P. Changes in enzyme activities and microbial biomass after“in situ”remediation of a heavy metal-contaminated soil.
Applied Soil Ecology,2005,28(2):125-137
|
CSCD被引
19
次
|
|
|
|
3.
Franz E. A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure.
Journal of Food Protection,2008,71(12):2504-2513
|
CSCD被引
5
次
|
|
|
|
4.
Fredrickson J K. Environmental processes mediated by iron-reducing bacteria.
Current Opinion in Biotechnology,1996,7(3):287-294
|
CSCD被引
11
次
|
|
|
|
5.
Gonzalez-Silva B M. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge.
Journal of Hazardous Materials,2009,172(1):400-407
|
CSCD被引
4
次
|
|
|
|
6.
Guo Y Q. Surface chemical-modification for engineering the intrinsic physical properties of inorganic twodimensional nanomaterials.
Chemical Society Reviews,2015,44(3):637-646
|
CSCD被引
12
次
|
|
|
|
7.
Hua J. Cr release from Cr-substituted goethite during aqueous Fe (II)-induced recrystallization.
Minerals,2018,8(9):367
|
CSCD被引
3
次
|
|
|
|
8.
Liu Y L. Nano-FeS incorporated into stable lignin hydrogel: a novel strategy for cadmium removal from soil.
Environmental Pollution,2020,264:114739
|
CSCD被引
6
次
|
|
|
|
9.
Marchal R. Effect of ferrous ion availability on growth of a corroding sulfate-reducing bacterium.
International Biodeterioration & Biodegradation,2001,47(3):125-131
|
CSCD被引
14
次
|
|
|
|
10.
Pagnanelli F. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation.
Bioresource Technology,2010,101(9):2981-2987
|
CSCD被引
9
次
|
|
|
|
11.
Park Y J. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn.
Bioresource Technology,2008,99(16):7458-7463
|
CSCD被引
4
次
|
|
|
|
12.
Peng W H. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: Efficiency and process.
Chemosphere,2018,201:697-707
|
CSCD被引
4
次
|
|
|
|
13.
Sanchez-Anderea I. Sulfate reduction at low pH to remediate acid mine drainage.
Journal of Hazardous Materials,2014,269:98-109
|
CSCD被引
21
次
|
|
|
|
14.
Schwertmann U.
Iron Oxides in the Laboratory: Preparation and Characterization. 3rd ed,2000:67-92
|
CSCD被引
1
次
|
|
|
|
15.
Shan S P. Simultaneous mitigation of tissue cadmium and lead accumulation in rice via sulfate-reducing bacterium.
Ecotoxicology & Environmental Safety,2019,169:292-300
|
CSCD被引
4
次
|
|
|
|
16.
Smith M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations.
Carbon,2016,110:155-171
|
CSCD被引
10
次
|
|
|
|
17.
Tan J. Remediation Technology for Combined Pollution of Lead and Cadmium in Farmland Soil.
Asian Agricultural Research,2018
|
CSCD被引
1
次
|
|
|
|
18.
Tebo B M. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn (IV), and Fe(III) as electron acceptors.
FEMS Microbiology Letters,1998,162(1):193-199
|
CSCD被引
20
次
|
|
|
|
19.
Wu S B. Sulphur transformations in constructed wetlands for wastewater treatment: A review.
Ecological Engineering,2013,52:278-289
|
CSCD被引
11
次
|
|
|
|
20.
董净. 硫酸盐还原菌的分纯及对Cd~(2+)钝化研究.
环境科学与技术,2019,42(5):34-40
|
CSCD被引
9
次
|
|
|
|
|