基于涡激振动的微型风能采集研究
Micro-wind Energy Harvesting by Vortex-Induced Vibration
查看参考文献14篇
文摘
|
由于体积大、污染环境、需要定期更换,传统电池供能方式已不能适应当前外场工作的需求.涡激振动的微型风能采集装置将风能转换成电能,能够对无线传感节点等微型电子设备直接供电.基于经典Buck-Boost电路,提出了一种适用于涡激振动微型风能采集的能量接口电路.通过理论与仿真分析,所设计的能量接口电路存在最优占空比,及其对应的最大功率点.基于LabVIEW平台设计了控制程序,实验结果表明,所设计的电路与程序能够对占空比进行自动寻优,保持微型风能采集装置以最大功率输出. |
其他语种文摘
|
Due to the large size,environmental pollution and requirement of periodically replacement, the classic batteries are no longer suitable for field work nowadays. Micro-wind energy harvesting by vortex-induced vibration can harvest the wind energy,and power the micro electric equipment such as wireless sensor nodes. Derived from the Buck- Boost circuit,a new energy interface circuit is designed for the micro-wind energy harvesting device. After theoretical analysis and simulation, there is an optimal duty cycle in the proposed circuit,which corresponds to the maximum output power. A control algorithm is developed with LabVIEW platform. Experimental results show that the proposed circuit and control algorithm can achieve the optimal duty circle,and keep the micro-wind energy harvesting outputs at its maximum power. |
来源
|
电子学报
,2021,49(6):1237-1240 【核心库】
|
DOI
|
10.12263/DZXB.20200346
|
关键词
|
压电陶瓷
;
风能回收
;
接口电路
;
涡激振动
;
微型发电
;
最大功率点
|
地址
|
1.
盐城工学院机械工程学院, 江苏, 盐城, 224051
2.
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
能源与动力工程;电子技术、通信技术 |
基金
|
国家自然科学基金
;
国防基础加强项目
;
江苏省自然科学基金面上项目
|
文献收藏号
|
CSCD:7018858
|
参考文献 共
14
共1页
|
1.
Ren X. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind.
Smart Materials and Structures,2018,27(6):065016
|
CSCD被引
6
次
|
|
|
|
2.
Ren X. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting.
Nano Energy,2018,50:562-570
|
CSCD被引
8
次
|
|
|
|
3.
马天兵. 无线传感器网络的压电能量收集技术研究.
传感器与微系统,2019,38(6):59-61,65
|
CSCD被引
5
次
|
|
|
|
4.
Ren X. Flexible lead-free BiFeO_3/PDMS-based nanogenerator as piezoelectric energy harvester.
Acs Applied Materials & Interfaces,2016,8(39):26190-26197
|
CSCD被引
4
次
|
|
|
|
5.
Yang Z. High-performance piezoelectric energy harvesters and their applications.
Joule,2018,2(4):642-697
|
CSCD被引
29
次
|
|
|
|
6.
Liu H. A comprehensive review on piezoelectric energy harvesting technology: materials,mechanisms, and applications.
Applied Physics Reviews,2018,5(4):041306
|
CSCD被引
20
次
|
|
|
|
7.
陈文艺. 微型振动能量收集器的研究现状及发展趋势.
微纳电子技术,2013,50(11):715-720
|
CSCD被引
9
次
|
|
|
|
8.
Izadgoshasb I. Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking.
Energy Conversion and Management,2018,161:66-73
|
CSCD被引
5
次
|
|
|
|
9.
付尧.
基于PZT的悬臂梁式俘能器建模仿真及能量回收电路设计,2018
|
CSCD被引
2
次
|
|
|
|
10.
Huguet T. Bistable vibration energy harvester andsece circuit: exploring their mutual influence.
Nonlinear Dynamics,2019,97(1):485-501
|
CSCD被引
3
次
|
|
|
|
11.
Li S. A piezoelectric energy-harvesting system with parallel-sshi rectifier and integrated mppt achieving 417% energy-extraction improvement and 97% tracking efficiency.
2019 Symposium on VLSI Circuits,2019:C324-C325
|
CSCD被引
2
次
|
|
|
|
12.
Li T. An Adaptive Self-powered Piezoelectric Energy Harvesting Circuit and Its Application on Bridge Condition Monitoring.
Preprints,2017:2017010062
|
CSCD被引
1
次
|
|
|
|
13.
阚君武. 涡激振动式微型流体俘能器的研究现状与展望.
光学精密工程,2017,25(6):1502-1512
|
CSCD被引
9
次
|
|
|
|
14.
郭家豪.
基于压电能量回收的涡激振动发电装置研究,2018
|
CSCD被引
3
次
|
|
|
|
|