基于直觉模糊Memetic框架的双粒子群混合优化算法
Hybrid Double Particle Swarm Optimization Algorithm Based on Intuitionistic Fuzzy Memetic Framework
查看参考文献15篇
文摘
|
为了平衡粒子群算法多样性与收敛速度,本文在Memetic框架下结合多属性决策,提出基于直觉模糊Memetic双种群混合优化算法.算法采用探索与开发分布式策略,在探索阶段,设计了社会强化算子和碰撞反弹算子提升种群多样性与勘探更多新区域;通过建立直觉模糊多属性决策对探索区域综合评估并生成可能存在的全局最优解区域,进而指导具有拉马克学习的开发种群进行局部精细搜索,实现不同策略下种群间的分布式协作与计算资源的合理分配.通过与其它5种新型进化算法在23个基准函数测试结果中体现出本算法具有更好的综合优化能力. |
其他语种文摘
|
In order to mitigate the difficulty of balancing diversity and convergence in heuristic algorithm, this paper proposes an IF-memetic hybrid double particle swarm optimization (IFMHDPSO) based on intuitionistic fuzzy memetic framework and multi-attribute decision. There are two independent exploration and exploitation populations employing distributed strategies in which social reinforcement operator and collision rebound operator are proposed to improve diversity of algorithm and explore new areas in populations of exploration. Moreover, an intuitionistic fuzzy multi-attribute decision making is built up for comprehensively evaluating the solution space to get the potential global optimal solution area,which can guide the PSO(Particle Swarm Optimization) with Lamarckian mechanism to carry out the local search to achieve cooperation between populations under different strategies and reasonable allocation of computational resources. Compared with other 5 new evolutionary algorithms, IFMHDPSO is of better comprehensive optimization in 23 benchmark function test results. |
来源
|
电子学报
,2021,49(6):1041-1049 【核心库】
|
DOI
|
10.12263/DZXB.20201144
|
关键词
|
粒子群
;
Memetic框架
;
直觉模糊多属性决策
;
分布式协作
;
拉马克学习
|
地址
|
1.
西北大学信息科学与技术学院, 陕西, 西安, 710127
2.
西安交通大学, 陕西, 西安, 710049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
国家自然科学基金重大项目
;
国家自然科学基金
;
国家自然科学基金
;
陕西省自然科学基金
|
文献收藏号
|
CSCD:7018834
|
参考文献 共
15
共1页
|
1.
Ma H P.
Evolutionary Computation With Biogeography-Based Optimization,2017
|
CSCD被引
1
次
|
|
|
|
2.
Ismail A M. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
Biosystems,2017,162:81-89
|
CSCD被引
2
次
|
|
|
|
3.
Si W. A novel adaptive wavelet threshold estimation based on hybrid particle swarm optimization for partial discharge signal denoising.
Optik,2019,181:175-184
|
CSCD被引
5
次
|
|
|
|
4.
Sahin M. A new mixed-integer linear programming formulation and particle swarm optimization based hybrid heuristic for the problem of resource investment and balancing of the assembly line with multi-manned workstations.
Computers & Industrial Engineering,2019,133:107-120
|
CSCD被引
3
次
|
|
|
|
5.
邓先礼. 基于多种群的自适应迁移PSO算法.
电子学报,2018,46(8):1858-1865
|
CSCD被引
20
次
|
|
|
|
6.
孙辉. 混合均值中心反向学习粒子群优化算法.
电子学报,2019,47(9):1809-1818
|
CSCD被引
13
次
|
|
|
|
7.
Garcia-Rodenas R. A memetic chaotic gravitational search algorithm for unconstrained global optimization problems.
Applied Soft Computing,2019,79:14-29
|
CSCD被引
2
次
|
|
|
|
8.
Krawczak M. On matching of intuitionistic fuzzy sets.
Information Sciences,2020,517:254-274
|
CSCD被引
4
次
|
|
|
|
9.
Konstantinidis A. Meta-Lamarckian learning in multi-objective optimization for mobile social network search.
Applied Soft Computing,2018,67:70-93
|
CSCD被引
1
次
|
|
|
|
10.
王毅. 属性权重不确定的直觉模糊多属性决策的威胁评估方法.
电子学报,2014,42(12):2509-2514
|
CSCD被引
30
次
|
|
|
|
11.
Yang X S. Cuckoo search via L'evy flights.
2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) Computing (NABIC'09),2009:210-214
|
CSCD被引
1
次
|
|
|
|
12.
Meng X B. A new bio-inspired algorithm: Chicken swarm optimization.
Advances in Swarm Intelligence,2014:86-94
|
CSCD被引
5
次
|
|
|
|
13.
Mirjalili S. Grey wolf optimizer.
Advances in Engineering Software,2014,69:46-61
|
CSCD被引
1055
次
|
|
|
|
14.
Mirjalili S. The whale optimization algorithm.
Advances in Engineering Software,2016,95:51-67
|
CSCD被引
765
次
|
|
|
|
15.
Derrac J. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation,2011,1(1):3-18
|
CSCD被引
195
次
|
|
|
|
|