基于液晶空间光调制器进行光谱调制的飞秒啁啾脉冲放大系统
Femtosecond Chirped Pulse Amplification System with Liquid Crystal Spatial Light Modulator for Spectral Modulation
查看参考文献20篇
文摘
|
飞秒光纤激光器具有良好的光束质量与稳定性,被广泛应用于精细材料加工行业。目前工业化光纤飞秒激光器主要是通过啁啾脉冲放大系统的多级放大来实现其高功率,可是多级放大过程会导致严重的增益窄化效应,限制最终的压缩脉冲宽度。为了解决增益窄化问题,缩短脉冲宽度,提高峰值功率,达到更好的“冷”加工效果,提出一种基于空间光调制器的光谱整形系统,通过加载到空间光调制器上的灰度图,产生中心凹陷、平顶等特殊光谱形状,放大后的光谱宽度与初始的种子源保持一致。与未加光谱调制相比,光谱调制后的光谱宽度从7 nm提高到9.5 nm,对应的极限脉宽从222 fs减少到164 fs左右。最后通过透射式光栅对压缩,得到了平均功率为1.3 W的飞秒激光输出,采用高斯拟合的方式测量脉冲,脉冲宽度为170 fs,接近转换极限脉冲。 |
其他语种文摘
|
Objective Compared with traditional solid-state lasers, such as slats and wafers, femtosecond fiber lasers have many advantages, including compact structures, good beam quality, stable systems, and good heat dissipation. They are widely used in various application fields, particularly in the field of fine material processing. The current femtosecond fiber laser is mainly used to reduce the problems of nonlinearity and device damage in the amplification process using the chirped pulse amplification technology to obtain a femtosecond laser with its peak power and narrow pulse width meeting processing requirements. Owing to the increase in the energy demand of an industrial fiber laser, the amplification classes also gradually increase, rendering the narrowing effect due to an uneven gain medium increasingly severe and influencing the final spectral width. Thus, its occurrence increases the compressed pulse width limit, reduces the pulse peak power, and severely impacts the thermal diffusion in processing. Currently, the gain narrowing problem of a femtosecond fiber laser can be solved using self-phase modulation, a new amplifying stage system, or dielectric layer filters. However, these approaches can only form fixed spectral modulation, which cannot solve the gain narrowing problem in different amplification or laser systems with different power requirements of the same amplification system. Therefore, programmable devices are proposed to achieve the controllability of spectral modulation. Among them, the liquid crystal spatial light modulator, a common element for beam shaping and pulse shaping, exhibits higher regulating precision than the general acousto-optic filter. For a fiber laser seed source, its spectral width is only a few nanometers or tens of nanometers; the liquid crystal spatial light modulator is more suitable for fiber laser spectral modulation. This study focuses on the characteristics of the spatial light modulator and the requirement of a chirp pulse amplification system for spectral modulation. The solutions of a spectral shaping system are proposed based on the two-dimensional (2D) intensity-type liquid crystal spatial light modulator for spectral modulation. The chirped pulse amplification system eliminates the gain narrowing problem and achieves a narrower output pulse duration. Methods Herein, the 2D intensity-type liquid crystal spatial light modulator was used for spectral modulation. First, the seed source is amplified using the single-mode amplification system and enters the spectral shaping system, which comprises the polarization-splitting prism, grating, and the intensity of reflection-type liquid crystal spatial light modulator to perform various spectral modulation shapes and verify the programmability and high precision of the spectral shaping system. Then, the subsequent multi-mode amplification and main amplification systems with an optical fiber aperture of 25 µm were established. The shape required for spectral shaping, which can be compared with the initial spectrum function to achieve a 2D grayscale map, was obtained using the step-by-step Fourier transform method combined with reverse operation. Next, the grayscale image was loaded into the spatial light modulator, and the spectral widths before and after the addition of the grayscale image were compared to investigate the influence of the shaping system on the spectra and the reasons for the spectral shape formation. Finally, the near-limited output pulse duration of the femtosecond laser was obtained by compressing an appropriate distance by the 1450 line/mm grating, and the pulse duration was measured using an autocorrelation instrument to determine the optimization results of pulse duration. |
来源
|
中国激光
,2021,48(11):1101001 【核心库】
|
DOI
|
10.3788/CJL202148.1101001
|
关键词
|
激光器
;
液晶空间光调制器
;
光纤飞秒激光器
;
光谱调制
;
增益窄化
;
啁啾脉冲放大系统
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国防基础科研基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:7015059
|
参考文献 共
20
共1页
|
1.
Gaumnitz T. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver.
Optics Express,2017,25(22):27506-27518
|
CSCD被引
91
次
|
|
|
|
2.
陈忠贇. 飞秒激光光镊直写银微纳结构.
中国激光,2018,45(4):0402006
|
CSCD被引
10
次
|
|
|
|
3.
原永玖. 飞秒激光加工石墨烯材料及其应用.
激光与光电子学进展,2020,57(11):111414
|
CSCD被引
10
次
|
|
|
|
4.
于淼. 长焦距绿光飞秒激光玻璃焊接.
中国激光,2020,47(9):0902005
|
CSCD被引
7
次
|
|
|
|
5.
He Z Q. Novel liquid crystal photonic devices enabled by two-photon polymerization.
Optics Express,2019,27(8):11472-11491
|
CSCD被引
3
次
|
|
|
|
6.
Russbueldt P. Compact diode-pumped 1.1 kW Yb: YAG innoslab femtosecond amplifier.
Optics Letters,2010,35(24):4169-4171
|
CSCD被引
28
次
|
|
|
|
7.
Tummler J. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy.
Optics Letters,2009,34(9):1378-1380
|
CSCD被引
5
次
|
|
|
|
8.
Jocher C. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power.
Optics Letters,2012,37(21):4407-4409
|
CSCD被引
10
次
|
|
|
|
9.
李峰. 百微焦级飞秒光纤激光放大系统.
中国激光,2015,42(12):1202005
|
CSCD被引
8
次
|
|
|
|
10.
Stark H. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification.
Optics Letters,2019,44(22):5529-5532
|
CSCD被引
18
次
|
|
|
|
11.
Zaouter Y. Femtosecond fiber chirped-and divided-pulse amplification system.
Optics Letters,2013,38(2):106-108
|
CSCD被引
13
次
|
|
|
|
12.
Huynh J. Femtosecond Yb: YGAG ceramic slab regenerative amplifier.
Optical Materials Express,2018,8(3):615-621
|
CSCD被引
2
次
|
|
|
|
13.
Cao H B. Active spectral shaping with polarization encoding of chirped pulses in Ti: sapphire amplifiers.
The European Conference on Lasers and Electro-Optics, 2017, June 25-29,2017,Munich, Germany,2017:CA_P_17
|
CSCD被引
1
次
|
|
|
|
14.
Chiba Y H. 65-fs Yb-doped fiber laser system with gain-narrowing compensation.
Optics Express,2015,23(5):6809-6814
|
CSCD被引
3
次
|
|
|
|
15.
王凤蕊. 液晶空间光调制器光谱整形的理论研究.
强激光与粒子束,2008,20(9):1441-1446
|
CSCD被引
2
次
|
|
|
|
16.
Krebs N. Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter.
Optics Express,2010,18(6):6164-6171
|
CSCD被引
1
次
|
|
|
|
17.
周佳琦. 非线性环路反射镜锁模光纤激光器的研究进展.
中国激光,2019,46(5):0508013
|
CSCD被引
7
次
|
|
|
|
18.
安国. 基于液晶空间光调制器的脉冲整形系统校准及应用.
光子学报,2014,43(7):0706012
|
CSCD被引
2
次
|
|
|
|
19.
刘振国. 振幅型空间光调制器的设计与实现.
光学仪器,2012,34(3):79-82
|
CSCD被引
1
次
|
|
|
|
20.
周小红. 高功率超短脉冲在增益介质中的传输特性.
光子学报,2010,39(8):1528-1532
|
CSCD被引
2
次
|
|
|
|
|