Optimality Conditions for Minimax Optimization Problems with an Infinite Number of Constraints and Related Applications
查看参考文献35篇
文摘
|
This paper is concerned with the study of optimality conditions for minimax optimization problems with an infinite number of constraints, denoted by(MMOP). More precisely, we first establish necessary conditions for optimal solutions to the problem(MMOP) by means of employing some advanced tools of variational analysis and generalized differentiation. Then, sufficient conditions for the existence of such solutions to the problem(MMOP) are investigated with the help of generalized convexity functions defined in terms of the limiting subdifferential of locally Lipschitz functions. Finally, some of the obtained results are applied to formulating optimality conditions for weakly efficient solutions to a related multiobjective optimization problem with an infinite number of constraints, and a necessary optimality condition for a quasi ε-solution to problem(MMOP). |
来源
|
Acta Mathematicae Applicatae Sinica-English Series
,2021,37(2):251-263 【核心库】
|
DOI
|
10.1007/s10255-021-1019-7
|
关键词
|
minimax programming problem
;
semi-infinite optimization
;
limiting subdifferential
;
multiobjective optimization
;
approximate solutions
|
地址
|
Department of Mathematics,College of Science,Yanbian University, Yanji, 133002
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0168-9673 |
学科
|
数学 |
基金
|
国家自然科学基金
;
the Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project
|
文献收藏号
|
CSCD:7013748
|
参考文献 共
35
共2页
|
1.
Bector C R. Duality for a class of minmax and inexact programming problem.
J. Math. Anal. Appl,1994,186:735-746
|
CSCD被引
1
次
|
|
|
|
2.
Chuong T D. Nondifferentiable fractional semi-infinite multiobjective optimization problems.
Oper. Res. Lett,2016,44:260-266
|
CSCD被引
1
次
|
|
|
|
3.
Chuong T D. Subdifferentials of marginal functions in semi-infinite programming.
SIAM J. Optim,2009,20:1462-1477
|
CSCD被引
2
次
|
|
|
|
4.
Chuong T D. Nonsmooth semi-infinite multiobjective optimization problems.
J. Optim. Theory Appl,2014,160:748-762
|
CSCD被引
8
次
|
|
|
|
5.
Chuong T D. Optimality conditions and duality in nonsmooth multiobjective optimization problems.
Ann. Oper. Res,2014,217:117-136
|
CSCD被引
4
次
|
|
|
|
6.
Chuong T D. Nondifferentiable minimax programming problems with applications.
Ann. Oper. Res,2017,251:73-87
|
CSCD被引
1
次
|
|
|
|
7.
Chuong T D. Isolated and proper efficiencies in semi-infinite vector optimization problems.
J. Optim. Theory Appl,2014,162:447-462
|
CSCD被引
4
次
|
|
|
|
8.
Dinh D. New Farkas-type constraint qualifications in convex infinite programming.
ESAIM Control Optim. Calc. Var,2007,13:580-597
|
CSCD被引
7
次
|
|
|
|
9.
Ehrgott M.
Multicretiria Optimiztaion,2005
|
CSCD被引
1
次
|
|
|
|
10.
Ekeland I. On the variational principle.
J. Math. Anal. Appl,1974,47:324-353
|
CSCD被引
94
次
|
|
|
|
11.
Goberna M A.
Linear Semi-Infinite Optimization,1998
|
CSCD被引
20
次
|
|
|
|
12.
Goberna M A. Recent contributions to linear semi-infinite optimization: an update.
Ann. Oper. Res,2018,271:237-278
|
CSCD被引
2
次
|
|
|
|
13.
Hong Z. Optimality conditions in convex optimization with locally Lipschitz constraints.
Optim. Lett,2019,13:1059-1068
|
CSCD被引
1
次
|
|
|
|
14.
Huang L R. Constraint qualifications for nonsmooth programming.
Optimization,2018,67:2139-2155
|
CSCD被引
1
次
|
|
|
|
15.
Husain Z. Second order duality for nondifferentiable minimax programming problems with generalized convexity.
J. Global Optim,2009,44:593-608
|
CSCD被引
3
次
|
|
|
|
16.
Jiao L G. Quasi ε-solution in a semi-infinite programming problem with locally Lipschitz data.
Optim. Lett,2019
|
CSCD被引
1
次
|
|
|
|
17.
Jiao L G. Approximate optimality and approximate duality for quasi approximate solutions in robust convex semidefinite programs.
J. Optim. Theory Appl,2018,176:74-93
|
CSCD被引
2
次
|
|
|
|
18.
Jiao L G. Finding efficient solutions in robust multiple objective optimization with sos-convex polynomial data.
Ann. Oper. Res,2019
|
CSCD被引
1
次
|
|
|
|
19.
Kim D S. Characterizations of solution sets of a class of nonconvex semi-infinite programming problems.
J. Nonlinear Convex Anal,2011,12:429-440
|
CSCD被引
4
次
|
|
|
|
20.
Kim D S. An approach to ε-duality theorems for nonconvex semi-infinite multiobjective optimization problems.
Taiwanese J. Math,2018,22:1261-1287
|
CSCD被引
1
次
|
|
|
|
|