水下大视场连续变焦光学系统设计
Design of underwater large field of view zoom optical system
查看参考文献31篇
文摘
|
针对现有水下光学系统中存在的主要不足,就某大视场水下连续变焦光系统指标要求,从水下光窗选型、光窗畸变、色差等的影响入手,分析了水下平板光窗引入的相对畸变和倍率色差特性,给出了相应的应对措施。结合水下工况对包络和工作距的要求,给出了一种三组联动的变焦系统设计模型和相应调跟焦组件的设计方法;通过在PNNP型结构中引入像差稳定镜组,对动态像差做稳定和补偿,改善了光学结构的像差校正能力,同时规避了凸轮曲线断点问题;通过在物方侧镜组中设置调跟焦镜组,保证了变焦全程对近景目标的清晰成像。完成了一个4 K水下大视场连续变焦光学系统设计,该系统工作距为0.5 m~inf,设计波段为0.48~0.64 μm,采用3 840×2 160高灵敏CMOS面阵探测器,像元大小为2 μm,变焦全程F数最大恒定为2.8,可实现全视场5.9°~62°、10倍以上连续变焦功能,具有较短的变焦行程、平滑的变焦轨迹、优良的成像性能等优点。 |
其他语种文摘
|
Under the requirements of an underwater large field of view zoom optical system,the selection of optical window and its influence on objective lens were discussed,by which the relative distortion and lateral color induced by the plane window were analyzed and corresponding design methods were given.Regarding the special envelope and working distance requirements of the underwater optical system,a three-part zoom system design model and the design method of the corresponding focusing components were provided by introducing aberration stabilizers in the PNNP structure,dynamic aberration correction capability of the optical structure was improved,also,the problems of the cam curve breakpoints were avoided;by setting the focus lens group in the objective parts,close-range imaging through the entire zoom range was guaranteed.A 4 K underwater large field of view zoom optical system was completed using 3 840×2 160 high-sensitivity CMOS detector,with 0.5 m-inf working distance,0.48–0.64 μm work waveband,constant F number of up to 2.8 and 5.9°–62° full field of view.The image quality and tolerance characters are validated by an assembled lens and its underwater imaging experiments. |
来源
|
红外与激光工程
,2021,50(7):20200468 【核心库】
|
DOI
|
10.3788/IRLA20200468
|
关键词
|
海洋光学
;
水下光学
;
变焦镜头
;
大变倍比
;
光学设计
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
物理学 |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7012316
|
参考文献 共
31
共2页
|
1.
Hua Dengxin. Research progress of ocean laser remote sensing technology(invited).
Infrared and Laser Engineering. (in Chinese),2018,47(9):0903003
|
CSCD被引
5
次
|
|
|
|
2.
Jin Weiqi. Review of underwater opto-electrical imaging technology and equipment (II).
Infrared Technology. (in Chinese),2011,33(3):125-132
|
CSCD被引
2
次
|
|
|
|
3.
Quan Xiangqian. Analysis and research progress of deep-sea optical illumination and imaging system.
Chinese Optics. (in Chinese),2018,11(2):153-165
|
CSCD被引
4
次
|
|
|
|
4.
Jaffe J S. Underwater optical imaging: status and prospects.
Oceanography,2001,14(3):66-76
|
CSCD被引
15
次
|
|
|
|
5.
Thorndike E M. A wide-angle, underwater camera lens.
JOSA,1950,40(12):823-824
|
CSCD被引
1
次
|
|
|
|
6.
Bin Sen. Optical design of an underwater observation system.
Laser and Infrared. (in Chinese),1978(6):19-22,99
|
CSCD被引
1
次
|
|
|
|
7.
Zhai Xuefeng. Design of underwater zoom lens.
Journal of Applied Optics. (in Chinese),2007,28(4):416-420
|
CSCD被引
1
次
|
|
|
|
8.
Sun Chuandong. Optical design of the lens for unerwater imaging system.
Optics and Precision Engineering. (in Chinese),1998,6(5):5-11
|
CSCD被引
2
次
|
|
|
|
9.
Zhu Caixia. Low-light-level imaging system for underwater anti-terrorism.
Journal of Applied Optics. (in Chinese),2008,29(2):220-224
|
CSCD被引
1
次
|
|
|
|
10.
Xie Zhengmao. Design of underwater low light photographic objective.
Journal of Applied Optics. (in Chinese),2009,30(1):6-10
|
CSCD被引
1
次
|
|
|
|
11.
Xie Zhengmao. Design for special underwater photography objective lens with wide angle and large relative aperture.
Acta Photonica Sinica. (in Chinese),2009,38(4):891-895
|
CSCD被引
2
次
|
|
|
|
12.
Du Ke. Design of optical zoom system for deep-sea detection.
Laser & Optoelectronics Progress. (in Chinese),2013,50(9):092201
|
CSCD被引
1
次
|
|
|
|
13.
Ma Haikuan. Design of underwater zoom lens for marine monitoring.
Laser & Optoelectronics Progress. (in Chinese),2017,54(10):100101
|
CSCD被引
1
次
|
|
|
|
14.
Johnson R B. Afocal viewport optics for underwater imaging.
SPIE. 9192,2014:91920P
|
CSCD被引
1
次
|
|
|
|
15.
Jiang Yang. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution.
Optics and Precision Engineering. (in Chinese),2019,27(11):2289-2295
|
CSCD被引
3
次
|
|
|
|
16.
Stanley E M. The refractive index of seawater as a function of temperature, pressure and two wavelengths.
Deep Sea Research and Oceanographic Abstracts,1971,18(8):833-840
|
CSCD被引
2
次
|
|
|
|
17.
Pegau W S. Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity.
Applied Optics,1997,36(24):6035-6046
|
CSCD被引
16
次
|
|
|
|
18.
Quan X. Empirical equation for the index of refraction of seawater.
Applied Optics,1995,34(18):3477-3480
|
CSCD被引
31
次
|
|
|
|
19.
Sun Chuandong. Water optical properties and their effect on underwater imaging.
Journal of Applied Optics. (in Chinese),2000,21(4):39-46
|
CSCD被引
1
次
|
|
|
|
20.
Menna F. Geometric and optic characterization of a hemispherical dome port for underwater photogrammetry.
Sensors,2016,16(1):48
|
CSCD被引
2
次
|
|
|
|
|