喀斯特关键带溶解性碳的迁移转化过程及其对降雨事件的响应
BIOGEOCHEMICAL PROCESSES OF DISSOLVED CARBON IN THE KARST CRITICAL ZONE AND ITS RESPONSE TO RAINSTORMS
查看参考文献56篇
文摘
|
喀斯特地区良好的水文连通性和丰富的碳酸盐岩使喀斯特关键带碳循环过程十分活跃,并对全球气候变化具有快速响应。为解析流量-溶解性碳浓度-碳同位素(Q-C-I)之间的动态关系以及喀斯特关键带重要的碳生物地球化学过程,本研究在降雨过程中对中国西南典型喀斯特流域---陈旗流域内的雨水、穿林雨、山坡径流、地表水和泉水进行了同步高频采集。结果表明,雨水中的溶解性无机碳(DIC)浓度很低,对地表水和泉水的整体贡献小。地表水和泉水中的DIC浓度随流量增加均表现出"溶质恒定(chemostatic)"行为,生物降解来源的CO_2是主要调控因素,其相对贡献比在采样期间随流量增加而上升,而碳酸盐岩以及大气CO_2的贡献相对较低且在水文变化时波动较小。流量相同时泉水中的DIC浓度及其单位时间的输出量均高于地表水。相比而言,雨水中的溶解性有机碳(DOC)浓度在穿过植被冠层后能上升1倍左右,在随径流从山坡运输到流域洼地的过程中也有上升趋势。地表水和泉水中的DOC浓度均随流量增加而增加,具有积聚效应,在运输过程中主要靠陆源补给,其输出量受控于与降雨情况有关的运输限制。因此,不同赋存形态碳在水文变化中的响应具有差异性,相互之间的转化也可能会改变流域的碳归趋行为。整体而言,流域内强烈的碳酸盐岩风化和农业活动对碳循环、气候以及水环境都会产生潜在影响。未来需要深入研究溶解性碳相互转换的时间尺度和控制机制及其在地表-地下运移过程中与喀斯特关键带结构的相互作用机理。 |
其他语种文摘
|
Karst landscapes characterize well hydrologic connectivity and abundant carbonate minerals,making carbon dynamic processes active and responsive to global climate change.The Chenqi catchment(26°15'20″~ 26°16'9″N,105°46'3″~ 105°46'50″E)is a typical karst catchment with an area of 1.25 km~2 in Puding,Guizhou province,Southwest China.It is affected by subtropical monsoonal climate,the annual mean rainfall here is 1140 mm,over 80% of which falls in the wet season.Carbonate rocks dominate the lithology in this catchment,over which Quaternary soils are unevenly distributed,thin(mean <50 cm)in hills but thicker(40 ~ 100 cm)in valley depressions.To analyze the discharge(Q)-dissolved carbon concentrations(C)-carbon isotope(I)relationship,and the vertical distribution and transport mechanism of dissolved carbon among rainwater-throughfall-hillslope runoff-surface water-spring in this karst catchment,we simultaneously conducted continuous in-situ monitoring and field sampling during rainstorms,and measured water quality parameters,dissolved carbon concentrations and isotope compositions.Results showed that the dissolved inorganic carbon(DIC)concentration in rainwater is too low(3.91±0.14 mg/L)to contribute a lot to surface water(42.31±1.34 mg/L)and spring(51.23±2.46 mg/L).DIC concentrations in surface water and spring both showed chemostatic responses to increasing discharge.The mean δ~(13)CDIC in surface water and spring were-13.9 ± 0.4‰ and-13.7 ± 0.6‰.According to the results of isotope mixing model(Isosource),the dynamic variations of DIC in karst water is mainly regulated by biogenic CO_2(>70%).The relative contribution ratio of biogenic CO_2 to DIC increased with increasing discharge during the sampling period,while the contribution ratios of carbonate and atmospheric CO_2 fluctuated slightly during hydrological variations.DIC concentrations and its export flux per unit time are both higher in spring than in surface water at the same discharge.Dissolved organic carbon(DOC)concentrations in rainwater increased by around one time after passing through the vegetation canopy(1.83±0.57 mg/L versus 4.39±0.61 mg/L).There was also an uptrend for DOC concentrations during its transportation accompanying with discharge from hillslope(4.36 ± 0.76 mg/L)to catchment depression(5.30 ± 1.60 mg/L).After infiltrating into epikarst,DOC concentration decreased to 1.83±0.62 mg/L in spring water.DOC concentrations in both surface water and spring increased with increasing discharge,showing an accumulation effect.The replenishment of DOC during its transport processes is mainly from terrestrial sources,which is mostly controlled by hydrologic transport limitation related to rainstorms instead of antecedent hydrologic condition.Different chemical speciation of carbon display different responses to rainstorms,the transformation between them can alter carbon fate within catchment.Overall,the strong carbonate weathering and agricultural activities can potentially affect carbon cycle,climate and water environment.In-depth researches are needed in the future to explore the mechanisms of dissolved carbon transformation and its interaction with the structure of karst critical zone. |
来源
|
第四纪研究
,2021,41(4):1128-1139 【核心库】
|
DOI
|
10.11928/j.issn.1001-7410.2021.04.19
|
关键词
|
喀斯特关键带
;
溶质恒定
;
溶解性碳的动态响应
;
碳酸盐岩风化
;
稳定碳同位素
|
地址
|
1.
西安交通大学人居环境与建筑工程学院, 陕西, 西安, 710049
2.
天津大学地球系统科学学院, 天津, 300072
3.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-7410 |
学科
|
地质学;环境科学基础理论 |
基金
|
中国科学院(B类)战略性先导科技专项项目
;
国家自然科学基金委员会国际(地区)合作与交流项目
|
文献收藏号
|
CSCD:7011088
|
参考文献 共
56
共3页
|
1.
Brantley S. Frontiers in Exploration of the Critical Zone.
Report of A Workshop Sponsored by the National Science Foundation (NSF),2006:30
|
CSCD被引
1
次
|
|
|
|
2.
Richter D Jr. Monitoring Earth's critical zone.
Science,2009,326(5956):1067-1068
|
CSCD被引
16
次
|
|
|
|
3.
Ford D.
Karst Hydrogeology and Geomorphology,2007:1-562
|
CSCD被引
9
次
|
|
|
|
4.
Beaulieu E. High sensitivity of the continental-weathering carbon dioxide sink to future climate change.
Nature Climate Change,2012,2(5):346-349
|
CSCD被引
17
次
|
|
|
|
5.
袁道先.
岩溶环境学,1988:1-332
|
CSCD被引
20
次
|
|
|
|
6.
Dreybrodt W.
Processes in Karst Systems,1988:1-304
|
CSCD被引
2
次
|
|
|
|
7.
Regnier P. Anthropogenic perturbation of the carbon fluxes from land to ocean.
Nature Geoscience,2013,6:597
|
CSCD被引
71
次
|
|
|
|
8.
Gaillardet J. Global silicate weathering and CO_2 consumption rates deduced from the chemistry of large rivers.
Chemical Geology,1999,159(1/4):3-30
|
CSCD被引
337
次
|
|
|
|
9.
Martin J B. Carbonate minerals in the global carbon cycle.
Chemical Geology,2017,449:58-72
|
CSCD被引
21
次
|
|
|
|
10.
Hartmann J. Global CO_2-consumption by chemical weathering: What is the contribution of highly active weathering regions?.
Global and Planetary Change,2009,69(4):185-194
|
CSCD被引
31
次
|
|
|
|
11.
Sanclements M D. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the northeastern United States.
Environmental Science & Technology,2012,46(6):3212-3219
|
CSCD被引
3
次
|
|
|
|
12.
Liu W. Spatial and seasonal variation of dissolved organic carbon (DOC) concentrations in Irish streams: Importance of soil and topography characteristics.
Environment Manage,2014,53(5):959-967
|
CSCD被引
4
次
|
|
|
|
13.
Perdrial J N. Stream water carbon controls in seasonally snow-covered mountain catchments: Impact of inter-annual variability of water fluxes, catchment aspect and seasonal processes.
Biogeochemistry,2014,118(1/3):273-290
|
CSCD被引
3
次
|
|
|
|
14.
Liu J. Hydrological regulation of chemical weathering and dissolved inorganic carbon biogeochemical processes in a monsoonal river.
Hydrological Processes,2020,34(12):2780-2792
|
CSCD被引
5
次
|
|
|
|
15.
Zhong J. Climate variability controls on CO_2 consumption fluxes and carbon dynamics for monsoonal rivers: Evidence from Xijiang River, Southwest China.
Journal of Geophysical Research: Biogeosciences,2018,123(8):2553-2567
|
CSCD被引
10
次
|
|
|
|
16.
Zarnetske J P. Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States.
Geophysical Research Letters,2018,45(21):11702-11711
|
CSCD被引
2
次
|
|
|
|
17.
肖琼. 岩溶区地表水体惰性有机碳研究.
第四纪研究,2020,40(4):1058-1069
|
CSCD被引
7
次
|
|
|
|
18.
张陶. 桂江典型断面夏季水-气界面CO_2交换的碳源与机制.
第四纪研究,2020,40(4):1048-1057
|
CSCD被引
6
次
|
|
|
|
19.
Rode M. Sensors in the stream: The high-frequency wave of the present.
Environmental Science & Technology,2016,50(19):10297-10307
|
CSCD被引
2
次
|
|
|
|
20.
Yue F J. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing.
Water Research,2020,186:116388
|
CSCD被引
5
次
|
|
|
|
|