单晶高温合金雀斑研究进展
Research progress in freckles of single crystal superalloys
查看参考文献56篇
文摘
|
为满足先进航空发动机发展需求,航空发动机涡轮叶片的结构日趋复杂,并且作为涡轮叶片首选材料的单晶高温合金中高熔点合金元素含量不断增加,由此导致单晶高温合金涡轮叶片制备过程中结晶缺陷形成倾向增大,直接影响单晶涡轮叶片的质量。本文以单晶高温合金定向凝固过程中出现的一种晶体缺陷---雀斑为讨论对象,综述了近年来雀斑形成机制、判据模型及其控制方法相关研究工作,分析了合金成分、叶片结构、定向凝固工艺和结晶取向对雀斑形成机制的影响,指出考虑不同合金体系中的合金元素与定向凝固过程的参数对雀斑形成的影响,进一步研究复杂结构单晶涡轮叶片雀斑形成规律,建立雀斑预测与控制的有效方法是未来的研究方向。 |
其他语种文摘
|
To meet the development needs of advanced aeroengines,the structure of aeroengine turbine blades is becoming increasingly complex,and the content of refractory elements is increasing in single crystal superalloys,which are the preferred materials for turbine blades.As a result,the tendency to form the grain defects increases during the preparation of single crystal turbine blades,which directly affects the quality of single crystal turbine blades.In this paper,a kind of grain defect that appears in the directional solidification process of single crystal superalloys-freckle was discussed.The research works on the formation mechanism,the criterion model and the control method of freckles formation during the directional solidification of single crystal superalloys in recent years was reviewed.The influence of the alloy composition,blade structure,directional solidification process and crystal orientation of single crystal castings on the formation of freckles was analyzed.Considering the influence of the alloying elements in different alloy systems and the parameters of the directional solidification process on the freckle formation,further studying the freckle formation mechanism of the single crystal turbine blade with complex structures,establishing an effective method for prediction and control of freckles are the future research directions. |
来源
|
材料工程
,2021,49(7):1-9 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.001127
|
关键词
|
单晶高温合金
;
雀斑
;
晶体缺陷
;
元素偏析
|
地址
|
中国航发北京航空材料研究院, 先进高温结构材料国防科技重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:7010942
|
参考文献 共
56
共3页
|
1.
Cetel A D. Second generation nickel-base single crystal superalloy.
Superalloys 1988,Proceedings of the 6th International Symposium on Superalloys,1988:235-244
|
CSCD被引
1
次
|
|
|
|
2.
Harris K. Development of the rhenium containing superalloys CMSX-4 and CM186LC for single crystal blade and directionally solidified vane applications in advanced turbine engines.
Superalloys 1992, Proceedings of the 7th International Symposium on Superalloys,1992:297-306
|
CSCD被引
1
次
|
|
|
|
3.
Walston W S. ReneN6:third generation single crystal superalloy.
Superalloys 1996,Proceedings of the 8th International Symposium on Superalloys,1996:27-34
|
CSCD被引
1
次
|
|
|
|
4.
Li J R. Development of a low-cost third generation single crystal superalloy DD9.
Superalloys 2016,Proceedings of the 13th International Symposium on Superalloys,2016:57-63
|
CSCD被引
1
次
|
|
|
|
5.
张军. 单晶高温合金凝固特性与典型凝固缺陷研究.
金属学报,2015,51(10):1163-1178
|
CSCD被引
16
次
|
|
|
|
6.
赵金乾. 小角度晶界对DD6单晶高温合金980℃拉伸性能的影响.
稀有金属材料与工程,2007,36(12):2232-2235
|
CSCD被引
3
次
|
|
|
|
7.
Zhou Y Z. Competitive grain growth in directional solidification of a nickel-base superalloy.
Superalloys 2008, Proceedings of the 11th International Symposium on Superalloys,2008:317-324
|
CSCD被引
1
次
|
|
|
|
8.
Li J R. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6.
Superalloys 2008,Proceedings of the 11th International Symposium on Superalloys,2008:443-451
|
CSCD被引
1
次
|
|
|
|
9.
Yang W P. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100 °C.
Transactions of Nonferrous Metals Society of China,2019,29(3):558-568
|
CSCD被引
17
次
|
|
|
|
10.
Tin S. Stabilization of thermosolutal convective instabilities in nickle-based single-crystal superalloys:carbon additions and freckle formation.
Metallurgical and Materials Transactions A,2001,32(7):1743-1753
|
CSCD被引
18
次
|
|
|
|
11.
Elliott A J.
Directional solidification of large cross-section nickel-base superalloy castings vialiquid-metal cooling,2005
|
CSCD被引
1
次
|
|
|
|
12.
Pollock T M. Grain defect formation during directional solidification of nickel base single crystals superalloys.
Superalloys 1992,Proceedings of the 7th International Symposium on Superalloys,1992:125-134
|
CSCD被引
1
次
|
|
|
|
13.
Pollock T M. The breakdown of singlecrystal solidification in high refractory nickel-base alloys.
Metallurgical and Materials Transactions A,1996,27:1081-1094
|
CSCD被引
38
次
|
|
|
|
14.
Copley S M. The origin of freckles in unidirectionally solidified castings.
Metallurgical Transactions,1970,1:2193-2204
|
CSCD被引
20
次
|
|
|
|
15.
Frueh C. Predicting freckledefects in directionally solidified Pb-Sn alloys.
Materials Science and Engineering:A,2002,328:245-255
|
CSCD被引
7
次
|
|
|
|
16.
Sarazin J R. Channel formation in Pb-Sn, Pb-Sb,and Pb-Sn-Sb alloy ingots and comparison with the system NH_4Cl-H_2O.
Metallurgical and Matenials Transactions A,1988,19(7):1861-1871
|
CSCD被引
1
次
|
|
|
|
17.
Felicelli S D. Three-dimensional simulations of freckles in binary alloys.
Journal of Crystal Growth,1998,191:879-888
|
CSCD被引
5
次
|
|
|
|
18.
Saad A. Simulation of channel segregation during directional solidification of in-75wt pct Ga qualitative comparison with in-situ observations.
Metallurgical and Materials Transactions A,2015,46(11):4886-4897
|
CSCD被引
5
次
|
|
|
|
19.
Felicelli S D. Modeling freckle formation in three dimensions during solidification of multicomponent alloys.
Metallurgical and Materials Transactions B,1998,29(4):847-855
|
CSCD被引
7
次
|
|
|
|
20.
Schneider M C. Modeling of micro-and macrosegregation and freckle formation in singlecrystal nickel-base superalloy directional solidification.
Metallurgical and Materials Transactions A,1997,28:1517-1531
|
CSCD被引
23
次
|
|
|
|
|