欧洲球载太阳望远镜SUNRISE及相关研究成果简介
Overview of Balloon-Borne Solar Telescope-SUNRISE
查看参考文献67篇
文摘
|
利用发射到平流层的球载太阳望远镜来观测太阳磁场演化和监视太阳活动有着得天独厚的优势。首先,在平流层中,球载太阳望远镜对太阳的观测不受来自地球对流层大气中天气现象的干扰,处于无视宁度影响的环境中,这为获取高质量的太阳图像提供了优越的条件。其次,平流层的空气已经十分稀薄,对紫外线的吸收也大大减弱,球载太阳望远镜能够在近紫外波段观测太阳活动和爆发。第三,球载太阳望远镜可以通过回收、升级和再利用来降低使用成本并提高望远镜的利用率,远比空间观测经济实惠。利用球载太阳望远镜开展对太阳的观测研究在欧美已经有半个多世纪的历史。简要回顾了太阳观测的球载任务发展历史,包括在这期间积累的丰富的仪器研制和观测经验,详细介绍欧洲“日出”(SUNRISE)球载任务的仪器搭载、高分辨率观测数据和一系列在此基础上完成的高质量科研成果,为我国球载望远镜的研制提供重要参考。 |
其他语种文摘
|
The advantage is unique to observe the solar evolution and monitor solar activities by using the balloon-borne solar telescope launched into the stratosphere of the Earth's atmosphere. First of all,observation of the balloon-borne telescope in the stratosphere is not disturbed by the climate phenomena in the troposphere, and is in a seeing-free environment,which provides a wonderful condition for obtaining solar images of high quality. Second,the air in the stratosphere is very tenuous,and the absorption in the ultraviolet wavelength weakens apparently,so the balloon-borne telescope is able to observe solar activities and eruptions in the nearultraviolet wavelength. Third,the cost could be low and the efficiency could be enhanced significantly by using the balloon-borne telescopes via recycling,upgrading,and reusing. This is much more economical and practical than by using the space-borne telescopes. It has been more than half a century since the balloon-borne telescope was first launched in the Europe and the USA. This work is going to briefly look back the history of the balloonborne solar telescope missions,including the rich experience in the instrument development and observations. The payloads of the SUNRISE,an European balloon-borne solar telescope mission,are described in this work, and large amount of the high quality data obtained by the SUNRISE,as well as the consequent scientific articles produced on the basis of these data are also introduced. The information presented here would be valuable and important for reference in developing the balloon-borne telescope in China. |
来源
|
天文研究与技术
,2021,18(3):314-336 【扩展库】
|
DOI
|
10.14005/j.cnki.issn1672-7673.20201026.001
|
关键词
|
球载任务
;
太阳望远镜
;
高空间分辨率
;
高时间分辨率
|
地址
|
1.
哈尔滨工业大学空间科学与应用技术研究院, 广东, 深圳, 518055
2.
中国科学院云南天文台, 云南, 昆明, 650216
3.
中国科学院空天信息创新研究院, 北京, 100094
4.
山东大学空间科学研究院, 山东, 威海, 264209
5.
北京大学地球与空间科学学院, 北京, 100871
6.
中国科学院太阳活动重点实验室, 中国科学院太阳活动重点实验室, 北京, 100101
7.
中国科学院长春光学精密机械与物理研究所, 吉林, 长春, 130033
8.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
9.
太阳-行星际-地磁天气团队, 中国科学院空间天气学国家重点实验室, 北京, 100190
10.
中国科学院大科学研究中心, 北京, 100101
11.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金
;
中国科学院战略性先导科技专项
;
中国科学院前沿科学重点研究项目
;
云南省创新团队培育项目
;
云南省高层次人才培养支持计划-云岭学者专项
;
国家自然科学基金面上项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7008053
|
参考文献 共
67
共4页
|
1.
Schwarzschild M. Photographs of the solar granulation taken from the stratosphere.
The Astrophysical Journal,1959,130:345-363
|
CSCD被引
3
次
|
|
|
|
2.
Danielson R E. The structure of sunspot penumbras. I. observations.
The Astrophysical Journal,1961,134:275
|
CSCD被引
2
次
|
|
|
|
3.
Mehltretter J P. Der flug von spektro-stratoskop.
Sterne und Weltraum,1976,15:44-47
|
CSCD被引
2
次
|
|
|
|
4.
Mehltretter J P. Balloon-borne imagery of the solar granulation. II. the lifetime of solar granulation.
Astronomy & Astrophysics,1978,62:311-316
|
CSCD被引
2
次
|
|
|
|
5.
Wittmann A. Balloon-borne imagery of the solar granulation. I. digital image enhancement and photometric properties.
Astronomy & Astrophysics,1977,61:75-78
|
CSCD被引
2
次
|
|
|
|
6.
Krat V A. The third flight of the soviet stratospheric solar observatory.
Astronomicheskij Tsirkulyar,1970,597:1
|
CSCD被引
1
次
|
|
|
|
7.
Krat V A. On the size of the structure elements in the solar chromosphere.
Solar Physics,1972,27(1):39-43
|
CSCD被引
2
次
|
|
|
|
8.
Krat V A. On the sunspot structure.
Solar Physics,1972,26(2):305-317
|
CSCD被引
2
次
|
|
|
|
9.
Rust D M. Balloon-borne polarimetry.
Solar Physics,1996,164(1/2):403-415
|
CSCD被引
3
次
|
|
|
|
10.
Bernasconi P. High resolution polarimetry with a balloon-borne telescope: the flare genesis experiment.
Astronomical Society of the Pacific Conference Series,1999
|
CSCD被引
1
次
|
|
|
|
11.
Bernasconi P N. Balloon-borne telescope for high-resolution solar imaging and polarimetry.
Proceedings of SPIE,2000:214-225
|
CSCD被引
1
次
|
|
|
|
12.
Georgoulis M K. Statistics,morphology,and energetics of ellerman bombs.
The Astrophysical Journal,2002,575:506-528
|
CSCD被引
8
次
|
|
|
|
13.
Herse M. High resolution photographs of the sun near 200 nm.
Solar Physics,1979,63(1):35-60
|
CSCD被引
1
次
|
|
|
|
14.
Samain D. Balloon-borne ultraviolet solar telescope and high resolution echelle spectrograph-instrumentation and first results.
Astrophysics and Space Science,1985,115:227-241
|
CSCD被引
1
次
|
|
|
|
15.
Barthol P N. Balloon-borne telescope for high-resolution solar imaging and polarimetry.
Proceedings of SPIE,2000
|
CSCD被引
1
次
|
|
|
|
16.
Solanki S K. First results from the sunrise mission.
Astronomical Society of the Pacific Conference Series,2012
|
CSCD被引
1
次
|
|
|
|
17.
Solanki S K. The second flight of the sunrise balloon-borne solar observatory: overview of instrument updates,the flight,the data,and first results.
The Astrophysical Journal Supplement Series,2017,229(1):2-16
|
CSCD被引
4
次
|
|
|
|
18.
Barthol P. Getting ready for the third science flight of sunrise.
Proceedings of the 42nd COSPAR Scientific Assembly,2018
|
CSCD被引
1
次
|
|
|
|
19.
Barthol P. The sunrise mission.
Solar Physics,2011,268(1):1-34
|
CSCD被引
5
次
|
|
|
|
20.
Berkefeld T. The wave-front correction system for the sunrise balloon-borne solar observatory.
Solar Physics,2011,268(1):103-123
|
CSCD被引
1
次
|
|
|
|
|