与活动区AR11158中的一个X2.2级耀斑相关的视向电流密度的计算
The Calculation of Line-of-sight Electric Current Density Associated with An X2.2 Flare in Active Region AR11158
查看参考文献42篇
文摘
|
太阳高能活动爆发与活动区内的电流结构有着密切的联系,安培(Ampere)定律jz = 1/μ0(∇× B) z是测量活动区内视向电流密度的理论基础。由于实测的矢量磁场中不可避免地存在随机噪声,因此,应用安培定律的不同形式计算的电流密度存在显著的差异。为了比较不同形式计算结果的差异并从中探索一种实用的电流计算方法,基于太阳动力学天文台(Solar Dynamic Observatory,SDO)/日震学与磁场成像仪(Helioseismic and Magnetic Imager,HMI)在2011年2月15日测量的活动区AR11158的矢量磁图,利用安培定律的微分算法和积分算法分别计算了活动区内视向电流密度的分布图。结果显示,微分算法获得的视向电流密度分布图受随机噪声的影响要远比积分算法获得的结果大,电流分布图中的电流结构没有积分算法获得的结果清晰。另外,在扩大积分环路半径的情况下,所计算的电流分布图中的噪声信号快速降低,视向电流分布图中的电流结构更清晰。但是当继续扩大积分环路半径时,在获得清晰电流分布图的同时,部分精细结构也随之失真。该研究结果论证了适当扩大积分环路计算视向电流分布图可以降低计算结果受随机噪声的影响,从而获得清晰真实的视向电流分布图,但是积分路径的半径过大在消除噪声影响的同时会丢失电流分布中的一些精细结构。因此在实际计算电流的过程中,应该利用高分辨率的矢量磁图,选定合适的积分路径,利用安培定律的积分算法来计算活动区的视向电流,从而帮助我们探索耀斑爆发与活动区内电流结构的关系。 |
其他语种文摘
|
The explosion of energic solar activity is closely related to the current structure in the active region,Ampere's law jz = 1μ/(∇× B) z is the theoretical basis for measuring the current density in the active region. Due to the inevitable existence of random noise in the measured vector magnetic field,the current density calculated by using the different form of Ampere's law is significantly different. In order to compare the differences between the calculated results of different form and explore one of the most practical current calculation methods,this article is based on the vector magnetogram in activity region AR11158 measured by SDO (Solar Dynamic Observatory)/HMI (Helioseismic and Magnetic Imager) on February 15,2011. The distribution of the line-of-sight electric current density in the active region is calculated using differential algorithm and integral algorithm of Ampere's law. The results demonstrate that the distribution of line-of-sight electric current density jz obtained by the differential algorithm is more severely affected by random noise than the result obtained by the integral algorithm,the current structures in the current distribution diagram obtained by the integral algorithm is much clearer than the former. In addition,the noise signal of the calculated current distribution map will decrease sharply,as enlarging the radius of the integral loop,the current structure in the obtained current distribution map will become clear. However,when the radius of the integral loop continues to expand,part of the fine structures of the current distribution map will also be distorted when obtaining a clear current distribution diagram. The result of this study demonstrates that the map of current distribution which is calculated by expanding the integral loop properly can reduce the effect on calculation results from random noise,and obtaining a clear and true line-of-sight electric current distribution map. Though the noise is eliminated if the radius of the integral path is too large,some fine structures in the current distribution will be lost. Therefore,during the course of actual calculating electric current. It is suggested to use high-resolution vector magnetogram and use the integral algorithm of Ampere' s law to calculate the line-of-sight electric current in the active region by selecting an appropriate integration path,which can help us to explore the relationship between the eruptive flares and the structures of current in the active region. |
来源
|
天文研究与技术
,2021,18(3):283-293 【扩展库】
|
DOI
|
10.14005/j.cnki.issn1672-7673.20201123.003
|
关键词
|
活动区
;
耀斑
;
矢量磁场
;
电流密度
;
安培定律
|
地址
|
1.
云南师范大学物理与电子信息学院, 云南, 昆明, 650500
2.
云南省高校高能天体物理重点实验室, 云南省高校高能天体物理重点实验室, 云南, 昆明, 650500
3.
中国科学院云南天文台, 云南, 昆明, 650216
4.
石家庄学院物理学院机电学院, 河北, 石家庄, 050035
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
天文学 |
基金
|
国家自然科学基金
;
云南省高校高能天体物理重点实验室资助
|
文献收藏号
|
CSCD:7008049
|
参考文献 共
42
共3页
|
1.
Gosling J T. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections.
Journal of Geophysical Research Space Physics,1991,96(A5):7831-7839
|
CSCD被引
20
次
|
|
|
|
2.
Zirin H. Narrow lanes of transverse magnetic field in sunspots.
Nature,1993,363(6428):426-428
|
CSCD被引
2
次
|
|
|
|
3.
Yan X L. Rapid rotation of a sunspot associated with flares.
Astronomy & Astrophysics,2007,468(3):1083-1088
|
CSCD被引
6
次
|
|
|
|
4.
Yan X L. Relationship between rotating sunspots and flare productivity.
Monthly Notices of the Royal Astronomical Society,2010,391(4):1887-1892
|
CSCD被引
1
次
|
|
|
|
5.
Meunier N. Fast photospheric flows and magnetic fields in a flaring active region.
Astronomy & Astrophysics,2003,412(2):541-553
|
CSCD被引
3
次
|
|
|
|
6.
Yang S H. Block-induced complex structures building the flareproductive solar active region 12673.
The Astrophysical Journal Letters,2017,849:L21
|
CSCD被引
1
次
|
|
|
|
7.
Yan X L. Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673.
The Astrophysical Journal,2018,856(1):79
|
CSCD被引
7
次
|
|
|
|
8.
Sharykin I N. Onset of photosphericimpacts and helioseismicwaves in X9.3 solar flare of September 6,2017.
The Astrophysical Journal,2018,864(1):86
|
CSCD被引
2
次
|
|
|
|
9.
Masuda S. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection.
Nature,1994,371(6497):495-497
|
CSCD被引
45
次
|
|
|
|
10.
周团辉. 太阳耀斑环的收缩和剪切.
天文研究与技术,2012,9(4):357-362
|
CSCD被引
1
次
|
|
|
|
11.
林元章.
太阳物理导论,2000
|
CSCD被引
25
次
|
|
|
|
12.
Sakurai T. Magnetic field structures and flares.
Advances in Space Research,1993,13(9):109-117
|
CSCD被引
2
次
|
|
|
|
13.
Sun X. Evolution of magnetic field and energy in amajor eruptive active region based on SDO/HMI observation.
The Astrophysical Journal,2012,748(2):77
|
CSCD被引
8
次
|
|
|
|
14.
罗葆荣. AR6659光球色球的磁场速度场的演化特征及其与大耀斑的关系.
云南天文台台刊,1994(3):29-41
|
CSCD被引
1
次
|
|
|
|
15.
Wang H M. Vector magnetic field changes associated with Xclass flares.
The Astrophysical Journal,1994,424(1):436-443
|
CSCD被引
4
次
|
|
|
|
16.
Ravindra B. Evolution of currents of opposite signs in the flare productive solar active region NOAA 10930.
The Astrophysical Journal,2011,740(1):1441-1458
|
CSCD被引
1
次
|
|
|
|
17.
Torok T. Distribution of electric currents in solar active regions.
The Astrophysical Journal,2014,782:L10
|
CSCD被引
4
次
|
|
|
|
18.
Janvier M. Electric currents in flare ribbons: observations and three-dimensional standard model.
The Astrophysical Journal,2014,788(1):60
|
CSCD被引
6
次
|
|
|
|
19.
Hagyard M J. Observed nonpotential magnetic fields and the inferred flow of electric currents at a location of repeated flaring.
Solar Physics,1988,115(1):107-124
|
CSCD被引
2
次
|
|
|
|
20.
林元章. 太阳耀斑核块中的电流.
中国科学: A辑数学物理学天文学技术科学,1987,30(11):1184-1190
|
CSCD被引
1
次
|
|
|
|
|