固体塑性实验室时间尺度的分子动力学模拟概述
An overview of molecular dynamics simulations of plasticity in solids at experimentally relevant timescales
查看参考文献66篇
文摘
|
随着超级计算机软硬件的飞速提升,基于经验势函数的分子动力学模拟在解析固体塑性的微观机制方面发挥着关键作用。但是,由于传统分子动力学基于牛顿运动方程数值积分,积分时间步长通常为飞秒量级,其模拟的时间尺度通常限于纳秒量级,从而为模拟长时间尺度固体塑性机制带来了巨大的挑战。本文从分子动力学模拟的时间尺度限制切入,介绍目前国际流行的几种实验室时间尺度原子模拟技术,并以晶体位错塑性与非晶态物质扩散和剪切转变塑性为例,阐述实验室时间尺度和原子精度计算机模拟的思想与实施步骤。最后,展望了目前加速分子动力学方法普遍存在的问题,并提出可能的解决方案。 |
其他语种文摘
|
Molecular dynamics(MD)simulations based on an empirical force field has played a critical role in analysis of the microscopic plastic mechanisms of versatile solids,in light of the great advances in both software and hardware of supercomputers.However,a classical MD is conducted by taking time integration of the Newtonian equation of motion with a very tiny timestep of the order of femtosecond. Therefore,a typical MD simulation of million steps can only explore a timescale window of nanosecond, which brings about a great challenge in long timescale simulations,e.g.,of plastic deformation of solids. This paper will start with a brief introduction of the timescale issue in MD.Then,several state-of-the-art accelerated MD techniques are introduced which are capable of performing atomistic simulations up to experimentally relevant timescales.Several examples including dislocation plasticity in crystalline metals, as well as diffusion and shear transformation in amorphous materials will be computed in detail to demonstrate the basic ideas and procedures of atomic-scale simulations at experimental timescale. Finally,common shortcomings of modern accelerated molecular dynamics techniques,and possible solutions for a final goal of MD simulations spanning the whole timescale domain of plasticity in solid are discussed. |
来源
|
计算力学学报
,2021,38(3):280-289 【核心库】
|
DOI
|
10.7511/jslx20210117002
|
关键词
|
分子动力学
;
加速分子动力学
;
固体塑性
;
时间尺度
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-4708 |
学科
|
力学 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:7007599
|
参考文献 共
66
共4页
|
1.
Alder B J. Phase transition for a hard sphere system.
The Journal of Chemical Physics,1957,27(5):1208-1209
|
CSCD被引
90
次
|
|
|
|
2.
Alder B J. Studies in molecular dynamics.I.General method.
The Journal of Chemical Physics,1959,31(2):459-466
|
CSCD被引
71
次
|
|
|
|
3.
Gibson J B. Dynamics of radiation damage.
Physical Review,1960,120(4):1229-1253
|
CSCD被引
8
次
|
|
|
|
4.
Rahman A. Correlations in the motion of atoms in liquid argon.
Physical Review,1964,136(2A):A405-A411
|
CSCD被引
40
次
|
|
|
|
5.
Li X. Dislocation nucleation governed softening and maximum strength in nanotwinned metals.
Nature,2010,464(7290):877-880
|
CSCD被引
108
次
|
|
|
|
6.
Bulatov V V.
Computer Simulations of Dislocations,2006
|
CSCD被引
7
次
|
|
|
|
7.
Wang Y J. Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations.
Physical Review B,2013,88(11):115413
|
CSCD被引
2
次
|
|
|
|
8.
Wang Y J. A free energy landscape perspective on the nature of collective diffusion in amorphous solids.
Acta Materialia,2018,157:165-173
|
CSCD被引
6
次
|
|
|
|
9.
Ishii A. Adaptive-boost molecular dynamics simulation of carbon diffusion in iron.
Physical Review B,2012,85(6):064303
|
CSCD被引
2
次
|
|
|
|
10.
Kabir M. Predicting dislocation climb and creep from explicit atomistic details.
Physical Review Letters,2010,105(9):095501
|
CSCD被引
1
次
|
|
|
|
11.
Cao P H. Understanding the mechanisms of amorphous creep through molecular simulation.
PNAS,2017,114(52):13631-13636
|
CSCD被引
13
次
|
|
|
|
12.
Kocks U F. Thermodynamics and kinetics of slip.
Progress in Material Science,1975,19:141-145
|
CSCD被引
9
次
|
|
|
|
13.
Zhu T. Ultra-strength materials.
Progress in Material Science,2010,55(7):710-757
|
CSCD被引
40
次
|
|
|
|
14.
Kushima A. Time scale bridging in atomistic simulation of slow dynamics:Viscous relaxation and defect activation.
The European Physical Journal B,2011,82(3/4):271-293
|
CSCD被引
1
次
|
|
|
|
15.
Zhu T. Temperature and strain-rate dependence of surface dislocation nucleation.
Physical Review Letters,2008,100(2):025502
|
CSCD被引
39
次
|
|
|
|
16.
Zepeda-Ruiz L A. Atomistic insights into metal hardening.
Nature Materials,2021,20(3):315-320
|
CSCD被引
6
次
|
|
|
|
17.
Zepeda-Ruiz L A. Probing the limits of metal plasticity with molecular dynamics simulations.
Nature,2017,550(7677):492-495
|
CSCD被引
26
次
|
|
|
|
18.
Debenedetti P G. Second critical point in two realistic models of water.
Science,2020,369(6501):289-292
|
CSCD被引
3
次
|
|
|
|
19.
Das J. Work-hardenable ductile bulk metallic glass.
Physical Review Letters,2005,94(20):205501
|
CSCD被引
76
次
|
|
|
|
20.
Schroers J. Ductile bulk metallic glass.
Physical Review Letters,2004,93(25):255506
|
CSCD被引
74
次
|
|
|
|
|